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ABSTRACT 

 

 This dissertation presents new concepts and methodology in designing shape-morphing 

structures using bistable elements. Developed using the Pseudo-Rigid-Body Model (PRBM), 

linear bistable compliant mechanism elements produce predictable and controllable length 

changes. Step-by-step design procedures are developed to guide the design process of these 

bistable elements. Two different examples of Shape-Morphing Space-frames (SMSFs) were 

designed and prototyped utilizing the bistable linear elements in a single-layer grid, in addition to 

flexures and rigid links, to morph a cylindrical space-frame into both a hyperbolic and a 

spherical space-frame. Moreover, bistable unit-cell compliant-mechanism elements were also 

developed to morph a compact structure from a specific initial shape to a final specific shape. 

The detailed design of those unit-cells were done using Computer-aided design (CAD) software 

following a novel design procedure to transform a one-degree-of-freedom mechanism into a 

structure with sufficient compliance within its links to toggle between two chosen stable 

positions. Two different design examples were investigated in this research and prototyped to 

demonstrate the ability to morph disks into a hemisphere or a sphere with the structure being 

stable in both states (disk and sphere).  
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1 

 

 

 

 

 

CHAPTER 1: INTRODUCTION 

 

1.1 Objective 

 The objective of this dissertation is to introduce two new models for bistable compliant 

mechanisms and design guidelines for their customization. These models are demonstrated with 

arrays of such mechanisms being used to produce morphing structures. 

 The first model is a linear bistable element. The guidelines will allow designers to follow 

a step-by-step procedure to design a mechanism that would produce a linear bistable mechanism 

(i.e., the mechanism’s displacement is parallel to the applied force). In addition, two design 

examples are demonstrated that utilize the Linear Bistable Compliant Crank-Slider Mechanism 

(LBCCSM) elements to morph space-frames from a specific initial shape to a final desired 

shape. Placement of each element is critical, and it is dependent on the designer’s choice of the 

specific Shape-Morphing Space-frame (SMSF). 

 The second, a unit-cell bistable compliant mechanism model, is introduced with a step-

by-step design procedure using the Computer-aided design (CAD) Solidworks software. This 

allows the replacement of the LBCCSM with compact structures, which permit significant 

change in length when compared to their initial lengths. A novel method is developed to 

transform a four-bar mechanism into a bistable mechanism without the use of torsional springs at 

the joints. Two different examples of this novel method are modeled and prototyped 

demonstrating the use of unit-cell bistable elements. 
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1.2 Motivation 

 The motivation for this work is to develop design procedures for multiple compliant 

mechanism models that designers can utilize for specific applications. Having the ability to 

morph a space-frame or a structure from one stable position to another, by design, would impact 

the way engineers design their projects. To be able to achieve a possible second application from 

a single model is remarkable engineering by itself. The materials used to manufacture such 

compliant mechanisms play an important role in the design process; the compliant links will act 

as rigid links when no forces are applied, but once the mechanism is actuated, those links would 

have enough flexibility to convert the applied forces into enough potential energy that will allow 

such mechanism to toggle between the two states. 

  Common applications for bistable mechanisms include multistable switches, self-closing 

gates, hinges and closures [1]. On the other hand, the ability to change the surface profile upon 

actuation can be implemented in various applications such as deployable antennas, airplane 

wings’ morphing, and fluid flow controllers. Having a controllable Solid-Fluid interface can be 

used to reduce drag, restrict the flow and many other advantages. In the automotive industry, 

bistable mechanisms can be used to construct the fuselage or the bumper in particular of an 

automobile that upon collision, the kinetic energy is absorbed into the compliant links causing it 

to achieve the second stable position where fixing it may only require toggling the structure into 

its original state. Moreover, if the SMSF were able to be manufactured at the micro-scale, it 

could be used in medical applications as an intravascular stent. It would have the ability to 

change its shape to fit into a small incision and morph its structure to assume a final shape.  

 

 



www.manaraa.com

 

3 

1.3 Scope 

 The scope of this work is to describe two novel design methods and the demonstration of 

their ability in shape morphing. The first design method produces predictable and controllable 

length changes in certain mechanical systems, allowing the morphing from one specific shape 

into a different specific shape. The ability to specify the LBCCSM mechanism’s footprint is also 

important and is a novel contribution of this work. This type of design can be used in the Shape-

Shifting Surfaces (SSSs) [9] as an attachment to it, providing surface coverage and bistability to 

the space-frame. The controllable length change allows the design of a developable surface 

composed of single-layer grid of flexures and LBCCSMs that if arranged in certain tessellation 

pattern, would transform a 2D developable surface design to a variable 3D space-frame.  

 The second design method produces unit-cell compliant mechanism elements which can 

be used as an alternative to the LBCCSM in a dense structure to transform its planes or faces into 

bistable two dimensional shape. The ability to morph a single plane composed of a single 

mechanism from one specific shape into another with the use of compliant link for bistability is a 

novel contribution to this research. The bistable unit-cell elements can be used to construct an 

initial 3D shape that morph into different designed 3D shape maintaining structures’ stability at 

both state such as morphing a disk into a hemisphere or two disks into a sphere.  

1.4 Overview 

 Chapter 2 serves as background and prior research used in this dissertation. This includes 

the concept of Pseudo-Rigid-Body Model (PRBM) replacement method for both fixed-pinned 

and pinned- pinned cantilever beam, the concept of compliant mechanisms bistability, which is 

the ability to store and release the potential energy within its compliant links upon actuation and 

the application of graph theory in mechanisms. 
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 Chapter 3 describes the modeling of the Linear-Bistable-Compliant Crank-Slider 

Mechanism (LBCCSM) along with the equations and plots used to construct the flow charts and 

step-by-step design guidelines. Two different approaches to the design problem are illustrated 

with a design example for each approach. 

 Chapter 4 utilizes the LBCCSM modeling to design a Shape-Morphing Space-frame 

(SMSF). This involves the tessellation of a single-layer grid and identifying the rigid links from 

the variable link within the grid through a selection process. Design algorithms and morphing 

strategies are discussed with two design examples in which a cylindrical space-frame is morphed 

to a hyperbolic space-frame and to a spherical space-frame in the other. Both example are 

prototyped and were compared with the theoretical analysis. 

 Chapter 5 introduces the SMSF using quadrilateral bistable unit-cell elements via design 

example of morphing a disk to a hemisphere. The strategy behind the disk tessellation is 

discussed and how is it reduced to a manageable segments where mechanisms’ synthesis can be 

applied to individual planes. Each different plane was synthesized according to its type and 

dimensions governed by design constraints. Graph theory was also utilized to synthesize one of 

the mechanisms followed by the use of the Solidworks software for detailed design and 

validation of the mechanisms to ensure that all the constraints were met. Two prototypes were 

produced to demonstrate the shape morphing from a disk to a hemisphere in one arrangement. In 

another arrangement, disks morphed to a sphere, requiring a minor alteration to the design. The 

second prototype was then subjected to a tensile test to analyze its behavior under different 

displacement rates. 

 Chapter 6 investigates adding bistability to four-bar mechanisms by introducing over-

constraint. Previous work on achieving bistability in four-bar mechanisms, used placing a 
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torsional spring at a specific joint, was limited in the second stable positions that the mechanisms 

could toggle to. It was found that replacing the torsional spring with a compliant link at a specific 

location within the mechanism, allows to specifically designing arbitrary second stable positions. 

The design process was carried out using the Solidworks in two stages; the first stage considers 

the kinematic analysis of the mechanism, where the second stage analyzes the placement of the 

compliant link that serves as Potential Energy Element (PEE). Both stages are illustrated using 

step-by-step design guidelines.  

 Chapter 7 concludes this research work by summarizing the contribution done to the 

compliant mechanism field. Recommendations are given to whom wants to utilize the designs 

procedures. Finally, future work ideas are given. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Compliant Mechanisms 

 A compliant mechanism is a mechanism that derives some or all its motion (mobility) 

from the deflection of flexible segments, thereby removing the need for mechanical joints. The 

absence or reduction of mechanical joints impacts both performance and cost. The flexible 

segments within the mechanism are generally thinner than the rigid ones, thus they are the first to 

deform under the applied force or displacement. The compliant mechanisms are categorized into 

two types, fully compliant or partially compliant. The fully compliant mechanisms do not 

contain any kinematic pairs (pins), whereas the partially compliant may contain one or more 

joints such as sliders and pins [1].  

 Advantages include reduced friction and wear, increased reliability, precision, and 

decreased maintenance and weight [1, 20]. Moreover, cost is also affected by reduced assembly 

time and, in most cases, due to its hingeless design; the fabrication of such mechanisms can be 

produced from a single piece reducing the number of parts [2]. An increase of precision within 

the compliant mechanism is due to the absence of friction forces generated by pin joints, thus 

reducing the vibration. As a result, compliant mechanisms are widely used in high precision 

instruments [3,46]. Also this type of mechanism is used in commercial products such as 

compliant based hinges [4, 5]. Additionally, compliant mechanisms provide the designer with an 

effective way to achieve mechanical stability in robotic design as in [45]. On the other hand, 

there are disadvantages and challenges in using compliant mechanism. The compliant segments 
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can experience creep (stress relaxation) deformation if they were subjected to a high-stress high-

temperature environment for a long period of time. Because the flexible segments are used as 

potential energy storage elements, staying within the elastic rage of the material when the 

mechanism experience deformation is challenging and imposes limitations the design [6].  

2.2 Approaches in Designing Compliant Mechanisms 

 The most commonly used approach in synthesizing compliant mechanisms is the Pseudo-

Rigid-Body Models (PRBMs) [1], which is the method used in this research work, as further 

insight will be discussed. Alternative approaches utilize topology optimization methods to 

produce nonlinear compliant mechanism under specific input and output displacement [47, 48]. 

Su [49] uses the polynomial homotopy to formulate the four-bar compliant mechanism kinematic 

equations, solving for specific design parameters. An interesting approach used by Limaye [50] 

is using a compliant mechanism kit (connector and flexible beams) that will allow the 

construction of a designed mechanism and correlate the behavior of that from the topology 

optimization. Finally, computer-aided design (CAD) software was used in [58, 59] for planar 

mechanism kinematics designs and synthesis, whereas in this research, CAD will be heavily used 

in bistable compliant mechanisms design and synthesis. 

2.3 Pseudo-Rigid-Body Model (PRBM) Concept 

 The Pseudo-Rigid-Body Model (PRBM) was the approach used to design the LBCCSM 

elements, the PRBM approximations were first developed by Howell and Midha [7]. Those 

approximations were then compared to the Bernoulli-Euler beam equations to produce a more 

general approach to the PRBM as well as to quantify its accuracy [8].  

 The PRBM are an easier and simplified technique to analyze and characterize the 

nonlinear behavior of beams undergoing large deflections. This technique approximates the 
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flexural beam as two or more rigid links (depending on the beam’s loading condition) joined by 

torsional springs. The location of the torsional springs, the stiffness coefficient and the length of 

the rigid links are all PRBM parameters, in which they describe the nonlinear behavior in the 

kinematic and force-deflection analysis of the mechanical system. There are different types of 

PRBMs developed using the compliant mechanism theory to simulate the flexural segments’ 

behavior which includes [12-19]: 

 Small-length flexural pivots or living hinges,  

 Fixed-Pinned cantilever beam with a force at the free end, 

 Fixed-Guided flexible segments, 

 End-Moment loading on cantilever beams, 

 Initially curved cantilever beams, 

 Pinned-Pinned cantilever beam segments, 

 Fixed-Fixed segment with force and moment, 

 Fixed-Pinned 3D cantilever beam with an arbitrary force at the end, and 

 Fixed-Pinned cantilever beam with forces and uniformly distributed loads acting in 

parallel. 

 

 This research focuses on two PRBM types, the Fixed-Pinned cantilever beam with a force 

at the free end and the Pinned-Pinned cantilever beam [1]. The following subsections will 

discuss each model individually. Both PRBMs use torsional springs modeled using small-length 

flexural pivots (straight joint and constant cross-section) with their stiffness derived from the 

mechanism’s material properties [51]. Under large displacement, the compliant segments 

experience high stresses which limiting the range of motion of the mechanism. Analyses on 
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different types of joints (curved and semicircular) configurations were done in [52, 53] for use as 

large displacement hinges. 

2.3.1 PRBMs for Fixed-Pinned Cantilever Beam 

 This PRBM considers a uniform cross section cantilever, shown in Figure 2.1 (a), with 

homogenous material properties. Figure 2.1 (b) shows the equivalent pseudo-rigid-body model 

for a large deflection with the end-point of the beam following a circular path in which the 

characteristic pivot is its center. The torsional spring, which the material properties determine its 

stiffness coefficient (K), is located at the characteristic pivot to represents the resistance of the 

beam upon deflection. The radius of the beam’s end path is represented by the characteristic 

radius (l) where (l) is the beams undeflected total length and () is the characteristic radius 

factor. The angle between the undeflected pseudo-rigid-link and the deflected position is called 

the pseudo-rigid-body angle (Θ). The location of the end point of the beam (where the origin is at 

the fixed end) is represented by the (a) and (b) which are the x-coordinate (horizontal distance) 

and the y-coordinate (vertical distance), respectively. The equations describing this pseudo-rigid-

body-model are [1]: 

  
 ⁄     (      ) (2.1) 

  
 ⁄        (2.2) 
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Figure 2.1 The PRBM of the Fixed-Pinned cantilever beam, adapted from [1]. 

 

2.3.2 PRBMs for Pinned-Pinned Cantilever Beam 

 This model was developed for initially curved beams and it was slightly modified to fit 

the use of the LBCCSM discussed in Chapter 3. Figure 2.2 (a) shows a cantilever beam with 

nonlinear large deflection behavior, whereas Figure 2.2 (b) represents the same beam with the 
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pseudo-rigid-body approximation. It uses the same definitions as the Fixed-Pinned PRBM with 

the following modified equations [1]: 

  
 ⁄            ( ) (2.6) 

  
 ⁄   

 
 ⁄       (2.7) 

         (  
 ⁄ ) (2.8) 

 

Figure 2.2 The PRBM of the Pinned-Pinned cantilever beam, adapted from [1]. 

 

2.4 Bistability in Compliant Mechanisms 

 A compliant bistable mechanism achieves its stability within the designed range of 

motion, by storing and releasing strain energy in its compliant segments [21]. Such a technique 

enables the mechanism to stay at its two stable positions without the need for an external 



www.manaraa.com

 

12 

power/force to stay there. Energy methods, combined with Pseudo-Rigid-Body Models, can be 

used to analyze such compliant mechanisms [22]. 

2.4.1 Definition of Stability 

 The term stability in mechanisms is derived from their equilibrium state. There are two 

types of equilibriums, either stable or unstable; the stable equilibrium is a state where the 

mechanism’s potential energy is at minimum and if any finite load or displacement exerted on it 

will cause oscillation about the point of equilibrium. On the other hand, as unstable equilibrium 

occurs at the maximum potential energy point on the mechanism’s energy curve, and if any finite 

load or displacement exerted on the system will cause the mechanism to diverge to the stable 

equilibrium point.  

 This idea can be further illustrated using the “ball on the hill” analogy with the energy 

curve (potential energy vs. position) is correlated with the force-displacement curve for the given 

system shown in Figure 2.3. Starting from position 1, the ball is at stable equilibrium where the 

potential energy is at local minimum with no load being applied to the system as shown in the 

force-displacement curve. The force-displacement curve crosses the x-axis at every equilibrium 

points and when the derivative of the force-displacement curve is zero, this corresponds to an 

inflection point on the energy curve. At position 2, the ball is at unstable equilibrium state with 

the tendency to roll toward the first position or the third position depending on the direction of 

the load or displacement exerted. Position 3 of the ball is the second stable equilibrium point; 

this can be achieved using a hard-stop (position 3a) which holds the ball in place due to the 

reaction forces from the hard-stop on the ball, whereas the position 3b is the second stable 

equilibrium position (local minimum) by following the energy curve. 



www.manaraa.com

 

13 

 

Figure 2.3 Ball on the hill analogy. 

 

 The characteristics of such bistable systems (or mechanism) can be summarized by 

following the ball on the hill example and correlating both curves in Figure 2.3 and I quote: 

 “A mechanism will have a stable equilibrium position when the first derivative of the 

potential energy curve is zero and the second derivative of the potential energy curve is 

positive. 

 A mechanism will have an unstable equilibrium position when the first derivative of the 

potential energy curve is zero and the second derivative of the potential energy curve is 

negative. 

 A mechanism will have a neutrally stable equilibrium position when the first derivative of 

the potential energy curve is zero and the second derivative of the potential energy curve 

is also zero. 
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 Because two local minima must always contain one local maximum between them, an 

unstable or neutrally stable position will always occur between any two stable states. 

 The critical moment (the maximum load required for the mechanism to change stable 

states) may be found by evaluating the moment curve when the second derivative of 

potential energy is zero. 

 The stiffness of a stable equilibrium position is equal to the value of the second derivative 

of potential energy at that position.” [23] 

 

2.4.2 Examples of Compliant Mechanisms’ Stability 

 This subsection introduces work done on compliant mechanism stability by first 

describing examples of bistable mechanisms and then example s of multistable mechanisms. 

 In a wide variety of systems, bistable mechanisms are used to achieve two distinct 

mechanism state, such as bistable switches (on or off) and plastic caps (closed or open). The 

most commonly used mechanism is the four-bar linkage; an extensive study done by Howell [28] 

on this type of mechanisms by modeling it using the Pseudo-Rigid-Body (PRB) method. His 

studies concluded that by placing a torsional spring with a specific stiffness at a specific joint 

location will allow a four-bar mechanism to achieve bistability. The location of the spring for the 

Grashof mechanisms could be at either joint that is opposite to the shortest link, whereas for the 

non-Grashof and change-point mechanisms, the torsional spring could be located at any of the 

joints to produce bistable mechanisms. Similar studies were done by Schulze [29], where he 

incorporated the forces involved in a snap-action toggle mechanism by developing equations 

optimizing the actuation forces and the foot-print of the mechanism.  

 In micro-mechanisms (MEMS), interest in recent research has been focusing on 

developing micro compliant bistable mechanisms for their ability to be manufactured out of a 
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single unit without mechanical joints. Improving positioning accuracy along with energy 

efficiency on such mechanism was done by Jensen [33] through the development of the Young 

bistable mechanism and the Double-Young for tri-stable mechanisms in [56]. An in-plane rotary 

bistable compliant MEMS was also developed in [34] that could have potential use in micro-

mechanical locks, optical shutters, and micro valves, whereas micro-sensors are developed in 

[35]. Out-of-plane bistable MEMS are also developed by Lusk [36] where the initial stable 

position is in-plane and the second stable position is out-of-plane.  

 Furthermore, given the fact that a bistable compliant mechanism derives its motion from 

the large deformation of its compliant links, incorporating bucking behavior along with the 

PRBM models on bistable mechanisms was first introduced by Sonmez [37] and further 

enhanced by Camescasse [38]. In both studies, the bucking and post-buckling behavior of the 

compliant links is modeled using the theories in [39-42]. Various other techniques are used with 

compliant mechanisms such as the torque approach used by [43] to develop a flapping 

mechanism to simulate the motion of insects’ wings. Shape-memory-alloys are also used in [44] 

to actuate the bistable mechanism in a temperature controlled environment.  

 Arranging multiples of bistable mechanisms in certain configuration will result into tri-

stable compliant system as in [54]. Ohsaki [55] also showed a multistable compliant system 

snap-through arrangement by shape-designing pin-jointed segments. Three-way micro-

mechanisms switches are possible using the tri-stable approaches in [57].  

2.5 Shape Morphing Structures  

 Morphing of structures is an emerging research area in recent years. They have the ability 

to change shape and achieve multiple stable states; they may play an important role in future 

designs where structures can be reconfigured, adapting to different conditions such as airplane 
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wings. Morphing wings on aircraft can improve their performance over the traditional rigid 

wings. The wings adapt to the airplane’s flight mode by changing their aerodynamic profile [63]; 

interlocking actuators are arranged in linear pattern to form the wings’ structure providing 

morphing panels (developed by Boeing) in [69], whereas in [68], the aircraft wings are made of 

shape-memory alloy that are attached to the hinges to produce the shape morphing. Different 

types of design approaches are seen in the literature; designs could be in the form of origami-

based structures [64], compliant plate structures [62, 65], Rigid-body mechanisms [61] or 

microarchitecture [66]. Topology optimization is also used to develop a morphing roof structure 

space-frame in [67]. 

2.6 The Context of This Research in the Compliant Mechanisms Field 

 Gallego in [71] shows his classification system and classifies compliant mechanism 

literature based on its design methodology. Figure 2.4 highlights the branches that are the main 

focus of this research work. 

 

Figure 2.4 Classification for literature on compliant mechanism, adapted from [71].  
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CHAPTER 3: LINEAR BISTABLE CRANK-SLIDER-MECHANISM (LBCCSM)
 *

 

 

 This chapter presents a new model for a linear bistable compliant mechanism and design 

guidelines for its use; the mechanism is based on the crank-slider mechanism. This model takes 

into account the first mode of buckling and post-buckling behavior of a compliant segment to 

describe the mechanism’s bistable behavior. The kinetic and kinematic equations, derived from 

the Pseudo-Rigid-Body Model, were solved numerically and are represented in plots. This 

representation allows the generation of step-by-step design guidelines. The design parameters 

consist of maximum desired deflection, material selection, safety-factor, compliant segments’ 

widths, maximum force required for actuator selection and maximum footprint (i.e. the 

maximum rectangular area that the mechanism can fit inside of and move freely without 

interfering with other components). Because different applications may have different input 

requirements, this work describes two different design approaches with different parameters 

subsets as inputs. 

 The Pseudo-Rigid-Body Model (PRBM) is an important practical approach used in this 

work to analyze and synthesize the LBCCSM. The approximations used in the PRBM were first 

developed by Howell and Midha, and works by incorporating the similar behavior between rigid-

body mechanisms and compliant mechanisms [7]. The LBCCSM models based on two existing 

PRBMs, the Fixed-Pinned and the initially curved Pinned-Pinned PRBMs [1]. The Fixed-Pinned 

PRBM model was used to model the first segment (l as L1), as shown in Figure 2.1, and the 

_________________________________ 

* 
This chapter was published previously in [10]. Permission is included in Appendix H. 
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 second segment (l as L2) was modeled based on the initially curved Pinned-Pinned PRBM, as 

shown in Figure 2.2. A standard method for deriving the force-displacement equations for a 

compliant mechanism is the method of virtual work and the PRBM constants used are the 

recommended by Howell [1] as follows: 

 Characteristic radius (Fixed-Pinned)  γ = 0.85. 

 Characteristic radius (Pinned-Pinned) ρ = 0.85. 

 Stiffness coefficient  KΘ = 2.65. 

 

 This chapter is organized as follows: First, the theory behind the LBCCSM model and 

how it was derived based on both PRBMs is described; second, two different design approaches 

with different inputs are shown using flow charts along with design charts; third, step-by-step 

design examples are illustrated; fourth, a brief description about the prototypes produced is 

given; finally, some concluding remarks regarding the design guidelines, the two proposed 

approaches used and future work recommendation that needed to enhance the design model. 

3.1 Theory: LBCCSM Modeling 

 The model’s equations were derived by solving both the kinematic and virtual work 

equations. The notations and parameters used, as well as a sketch of the model, are shown in 

Figure 3.1 and Figure 3.2 (a, b). The points B and C are compliant joints, and are considered 

small length flexural pivots, which derive their characteristic motion though bending [24]. 

Kinematic equations were utilized to calculate the kinematic coefficient, which was then 

substituted into the virtual work equations. The model’s equations were then solved numerically 

and represented as plots. The parameters and nomenclatures used in this chapter and their 

definitions can be found in Appendix A. 
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Figure 3.1 The mechanism considered, Point A is fixed, point B and C are living hinges. 

 

 The LBCCSM model behaves chosen in two different ways depending on the design 

parameters. In the first case, only segment 1 will experience the deflection, whereas segment 2 

remains un-deflected and will only act as a force/displacement transmitter, can be seen in 

Figure 3.2 (a). In the second case, both segments experience some sort of deflection, i.e. bending 

of segment 1 and buckling of segment 2 as shown in Figure 3.2 (b). Both cases are presented 

with their corresponding equations, as well as the critical angles at which segment 2 buckles. 

Considering designs in which segment 2 buckles, allow for smaller footprints, which may be 

important in some applications. 

 

Figure 3.2 The LBCCSM model (a) 1
st
 case, (b) 2

nd
 case. 
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Figure 3.2 (Continued) 

 

 The notation used in this analysis and illustrates the relationship between the LBCCSM 

model and its equations can be shown in Figure 3.3. The Pseudo-Rigid-Body Model splits 

segment 1 into two parts [1]: 

            , where (3.1a) 

     (   )                    (3.1b) 

In similar manner, segment 2 is divided into three parts when it buckles [1]: 

                , where (3.2a)  

                             (   )   (3.2b) 

The characteristic stiffness associated with the Pseudo-Rigid-Body pivot in segment 1 is [1]: 

         
    

  
             

    
  

  
 (3.3) 

The characteristic stiffness associated with the two Pseudo-Rigid-Body pivots in segment 2 when 

it buckles is [1]: 

         
    

   ⁄
             

    
  

  
 (3.4) 
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Figure 3.3 LBCCSM model at (a) Initial state, (b) Intermediate state. 

 

3.1.1 The Buckling of Segment 2 

 The LBCCSM model’s critical angles occur when the model switches from being solved 

using first case (bending only) to being solved using the second case (bending and buckling). 

Figure 3.4 shows the analysis of the segments’ internal forces, which are then, used in the 

PRBM’s moment equations. The moment equation for segment 1, using its characteristic pivot 

stiffness, is [1]: 

               (3.5) 



www.manaraa.com

 

22 

 

Figure 3.4 Internal force analysis. 

 

From the force analysis illustrated in Figure 3.4: 

         (        ) (3.6) 

     
      

  
                 (3.7) 

Substituting equations (3.3, 3. 6 and 3.7) into equation (3.5) gives the condition for the critical 

value of (θ2): 

      
  

     
   (        ) (3.8) 

3.1.2 First Case: The Deflection of Segment 1 Only 

 In the first deflection mode, segment 2 does not buckle, and so the Pseudo-Rigid-Body 

Model looks like Figure 3.2 (a) and equations (3.2 and 3.4) do not apply. The loop closure 

equations for this case are: 

          (  )         (     )       (  )    (3.9) 

       (  )         (     )       (  )    (3.10) 
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The virtual work equations (3.11 and 3.12) were obtained after choosing which of the unknowns 

is the independent variable and which are dependent variables. These equations are derived 

based on (q1 = x and q2 = θ2) being the independent variables and (Θ1, Θ2 and F) being the 

dependent ones. 

         
  

   
      (3.11) 

   
 

 
     

    (
 

 
     

 ) (3.12) 

The above two equations (3.11 and 3.12) were solved for the independent variables and the 

kinematic coefficients. Because segment 2 is considered rigid in this case, substituting Θ2=0 is 

essential and results in: 

        
  

  
     (3.13) 

 
  

  
      

   

  
 (3.14) 

 
   

  
  

   (  )

      (        )
 (3.15) 

The equations are made non-dimensional, in a way that allows for design flexibility, with the use 

of the following terms: 

       (  )    (   )⁄       ⁄  (3.16) 

         (3.17) 

    
 

  
    

  
 

        
 (3.18) 

To non-dimensionalize the first case, equations (3.14 and 3.15) were substitute into equation 

(3.13) and then using equation (3.18) results in: 

       
   

  
   (3.19) 
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The final LBCCSM model’s equations for the first case, which were solved numerically, are: 

equations (3.9, 3.10 and 3.19). 

3.1.3 Second Case: The Deflection of Both Segments 

 In this case, both segments experience some deflection, and so the Pseudo-Rigid-Body 

Model looks like Figure 3.2 (b). The loop closure equations for this case are: 

          (  )         (     )        (     )        (  )        (     )    (3.20) 

       (  )         (     )        (     )        (  )        (     )    (3.21) 

Equations (3.11 and 3.12) were solved again for the independent variables result in: 

       
  

  
     (3.22) 

   
  

   
    

  

   
      (3.23) 

Solving for the kinematic coefficients within δV/δx and δV/δθ2 using equations (3.20) and (3.21) 

with δx/δθ2 = 0 due to both (x) and (θ2) are being chosen as independent variables results in: 
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 (3.27) 

 
   

  
  

   (  )

       (  )    (  )   (  )    (  )   (  ) 
 (3.28) 

 
   

   
 

      (  )       (  )       (  )

   (   (  )    (  ))
 (3.29) 



www.manaraa.com

 

25 

To non-dimensionalize the second case, equations (3.24 and 3.29) were substitute into equation 

(3.23) and using equations (3.16 to 3.18) results in: 

     
   

  
   

  

 
   

   

  
   (3.30) 

   
   

   
   

 

 
   

   

   
   (3.31) 

The final LBCCSM model’s equations for the second case, which were solved numerically, are: 

equations (3.20, 3.21, 3.30 and 3.31). The derivations of the above kinematic coefficients were 

done using the Mathcad software with the code shown in Appendix B. It is worth noting that the 

LBCCSM Matlab numerical simulation uses both cases’ equations, i.e. equations (3.9, 3.10 and 

3.19) from the first case and equations (3.20, 3.21, 3.30 and 3.31) from the second case. In 

addition, the numerical simulation uses the critical angle (θ2) to switch between being solved 

using the first case assumptions, to using the second case assumptions. Based on the input 

parameters, the critical angle (θ2) can be calculated using equations (3.8 and 3.10). The full 

Matlab code used in this simulation can be found in Appendix C. The next section discusses how 

the LBCCSM model is used to create step-by-step design guidelines.  

3.2 Design Approaches 

 Two separate design approaches are presented, as different applications may have 

different input/output requirements. The first approach considers the maximum vertical 

deflection of the model, while the second approach considers the maximum force. The design 

parameters required by both approaches are maximum desired deflection, material selection, 

safety-factor, compliant segments’ widths, maximum force required for actuator selection and 

maximum footprint (i.e. the maximum rectangular area the mechanism can fit inside and move 

freely without interfering with other components (X) and (bmax), as shown in Figure 3.2. In both 



www.manaraa.com

 

26 

approaches, the maximum linear deflection is considered as an input, which is the main purpose 

of this mechanism.  

 Both approaches are illustrated using step-by-step guidelines along with flow charts and 

design plots. In the next section, some practical design examples are given to illustrate the 

process of using the design plots. The design plots are graphical representations of the numerical 

solution to the model using Matlab. They represent the solution with one of the parameters, (θ1), 

preselected as shown in Table 3.1 for selected values. Plots for (θ1) of 20, 40 and 60 can be 

found in Appendix D. The LBCCSM model can work for any value of the first segment’s initial 

angle (θ1), as long as it satisfies a design condition of,                  

Table 3.1 Selective value of θ1. 

Initial angle 

(θ1) in [deg] 

Footprint 

aspect ratio 

Segments’ 

stresses 

20 
Low High 

30 

40 
Intermediate Intermediate 

50 

60 
High Low 

70 

 

 The following are descriptions of every design plot generated using the LBCCSM model: 

 Figure 3.5 (a-c): For the three selected values of (θ1), the relationship between the 

different values of maximum footprint ratio (bmax/X) and the second segment’s initial angles (θ2i) 

is presented over a range of stiffness coefficient ratios (v). The Footprint ratio varies with the 

change of stiffness ratio (v). The plot illustrates three different types of qualitative solutions. The 

first type is represented by the right most black curve, and shows the footprint ratio when no 

buckling occurs on segment 2. The second group of solutions is the minimum limit represented 

by the left black curve and it occurs when segment 1 is rigid while segment 2 buckles. Finally, 
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between the two limits are the solutions that combine the buckling of segment 2 and the bending 

of segment 1. 

 Figure 3.6 (a-c): For the three selected values of (θ1), the relationship between the 

different values of the first segment’s Pseudo-Rigid-Body (PRB) angle (Θ1) and the second 

segment’s initial angle (θ2i) is presented over a range of stiffness coefficient ratios (v). The plot 

illustrates two different types of qualitative solutions. The first type is represented by the black 

curve, and shows the (Θ1) of segment 1 when segment 2 acts only as a load and displacement 

transmitter. The second type shows the solutions that combine the buckling of segment 2 and the 

bending of segment 1. 

 Figure 3.7 (a-c): For the three selected values of (θ1), the relationship between the 

different values of the second segment’s initial angle (θ2i) and the non-dimensional force ( f ) is 

presented over a range of stiffness coefficient ratios (v). The plot illustrates two different types of 

qualitative solutions. The first type is represented by the black curve, and shows the ( f ) required 

to actuate the system when no buckling occurs on segment 2. The second type shows the 

solutions that combine the buckling of segment 2 and the bending of segment 1. 

 Figure 3.8, Figure 3.9, and Figure 3.10: Each of these plots consider different values of 

(θ1), equal to 30
o
, 50

o
 and 70

o
 respectively. They are used to find the stiffness coefficient ratios 

(v) after calculating the non-dimensional force-flexibility coefficients (J). This coefficient is a 

dimensionless representation of the maximum force and a material flexibility index. Part (a) of 

the plots considers a low range of stiffness coefficient ratio values corresponding to a lower force 

range. Alternatively, Part (b) considers a higher range of both values. 

 Those plots were generated from the Matlab Code in Appendix C for the selected values 

of θ1; for any other spesific θ1 plots, the same code can be applied by modifying the values of θ1. 
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Figure 3.5 (bmax/X) vs (θ2i) over range of (v), (a) θ1=30
o
, (b) θ1=50

o
 and (c) θ1=70

o
. 
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Figure 3.5 (Continued) 
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Figure 3.5 (Continued) 
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Figure 3.6 (Θ1) vs (θ2i) over range of (v), (a) θ1=30
o
, (b) θ1=50

o
 and (c) θ1=70

o
. 
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Figure 3.6 (Continued) 
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Figure 3.6 (Continued) 
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Figure 3.7 ( f ) vs (θ2i) over range of (v), (a) θ1=30
o
, (b) θ1=50

o
 and (c) θ1=70

o
. 
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Figure 3.7 (Continued) 
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Figure 3.7 (Continued) 
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Figure 3.8 (J) vs (θ2i) for θ1=30
o 
over range of (v), (a) Lower and (b) Higher force range. 
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Figure 3.9 (J) vs (θ2i) for θ1=50
o 
over range of (v), (a) Lower and (b) Higher force range.  
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Figure 3.10 (J) vs (θ2i) for θ1=70
o 
over range of (v), (a) Lower and (b) Higher force range. 
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3.3 First Design Approach 

 In this approach, if the design is only constrained by how much of an area, i.e. footprint, 

the mechanism will occupy, along with the maximum linear deflection, then the input design 

parameters are the maximum desired deflection, footprint, material selection, safety factor and 

material thickness. The output design parameters are the segments’ initial angles, the force 

required to actuate the mechanism and the segments’ widths. 

3.3.1 Flow Chart 

 A flow chart was developed for this approach, seen in Figure 3.11. This shows the input 

parameters, plots and equations to use, intermediate outputs and the final outputs of the design. 

 

Figure 3.11 The design flow chart for the first approach. 
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3.3.2 Step-By-Step Design Guidelines 

 Here are the steps used with the aid of the flow chart in Figure 3.11 and the plots. The 

order in which inputs and outputs are used is as follows: 

 Input design parameters: 

1- (Δ), the mechanism’s maximum linear deflection [mm]. 

2- (X), the maximum horizontal footprint [mm] shown in Figure 3.2. 

3- (θ1), the initial angle of segment 1 [deg]. 

4- (bmax), the maximum vertical footprint [mm] shown in Figure 3.2. 

5- The material’s mechanical properties and safety factor. 

6- (t), the material thickness [mm]. 

 Output design parameters: 

1- (L1 and L2), the segments’ length [mm]. 

2- (θ2i), the segments’ initial angle [deg]. 

3- (v), the stiffness coefficient. 

4- (w1 and w2), the segments’ width [mm]. 

5- (Fmax), the maximum actuation force needed [N].  

 

Step 1: Choose the linear deflection (Δ), which is the distance between the first stable point and 

the second stable point. Also, choose the maximum horizontal footprint (X). 

Step 2: Choose a value of (θ1), the initial angle of segment 1, from Table 3.1 based on the desired 

aspect ratio and stress level.  

Step 3: Use equation (3.32), which is derived from the cosine law based on the segments’ angles 

shown in Figure 3.2 (a), to calculate the first segment’s length (L1). 

    (   
 

 
)

 

   (  )
 (3.32) 
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Step 4: Use equation (3.33) to calculate the second segment’s length (L2). 

       √(
 

   
)
 

 (   (  ))  (3.33) 

Step 5: Use equation (3.34) to calculate the second segment’s initial angle (θ2i). 

          (
 

   
) (3.34) 

Step 6a: Choose the value of (bmax), which is the maximum vertical deflection that should satisfy 

the following condition: (        (  ))             

Step 6b: Calculate the non-dimensional value of the mechanism’s maximum height (bmax/X). Use 

the part of plot in Figure 3.5 that is for the selected (θ1) to find the stiffness coefficient ratio (v).  

Step 7: Use the part of plot in Figure 3.6 that is for the selected (θ1) to find the PRBM angle of 

segment 1 (Θ1) at the maximum vertical deflection. 

Step 8: Use equation (3.35), along with the material’s properties (E, σy), shown in table 2 for 

selective material, and safety factor selection, to find (w1) which was derived using equation 

(3.5) and the following equations: 

      
   

  
        

  

    
           

  

 
 

     
  

    
 

 

   
 

  

  
 (3.35) 

Table 3.2 Example of material selection and their properties [1]. 

Material name 
Young’s modulus 

E [GPa] 

Yield stress 

σy [MPa] 

Polypropylene 1.35 35 

HDPE 1.08 29.6 

HMWPE 0.937 27 

 

Step 9: Use equation (3.16) to find the ratio of the initial angles (m). Calculate (w2) using 

equation (3.36), which is derived using equations (3.3, 3.4, 3.16 and 3.17). If the segments’ 
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widths  are not possible due to reasons such as manufacturing difficulties, repeat step 8 with a 

different material or safety factor.  

    √ (  )⁄ 
    (3.36) 

Step 10: Use the part of plot in Figure 3.7 that is for the chosen (θ1) to find the non-dimensional 

force ( f ). 

Step 11: The maximum actuation force (Fmax) can be calculated using equation (3.37), which was 

derived from equation (3.18). The material thickness, (t), used to calculate the 2
nd

 moment of 

area, is the same for both segments. If the calculated force is not possible due to actuator 

limitations, repeat this step with a different material thickness. 

       
        

  
  (3.37) 

3.3.3 Design Example 

 Using the flow chart as guidance, an example is given to illustrate the walk-through 

between the design plots and equations for this design approach using the LBCCSM model. 

 Design statement: 

A linear bistable mechanism needs to be designed. The distance between the two 

stable points is 25.2 mm and the mechanism should fit in an area of 43.8 mm by 

21 mm. The mechanism is laser cut from a 5 mm thick Polypropylene sheet with 

design safety factor of 1. 

 Design inputs: 

Δ = 25.2 mm, X = 43.8 mm, bmax = 21 mm, t = 5 mm and SF = 1. 

γ = ρ = 0.85 and KΘ = 2.65 from the PRBM [1]. 

 Design solution: 

Step 1: Δ = 25.2 mm and X = 43.8 mm. 
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Step 2: From Table 3.1, θ1 = 30
o
 for low footprint. 

Step 3: Using equation (3.32), L1 = 36.03 mm. 

Step 4: Using equation (3.33), L2 = 22 mm 

Step 5: Using equation (3.34), θ2i = 55
o
. 

Step 6a: From inputs, bmax/X = 0.48, bi = 18 mm. 

Step 6b: Using Figure 3.5 (a), v = 25. 

Step 7: Using Figure 3.6 (a), Θ1 = 7
o
. 

Step 8: Material: Polypropylene, E = 1.35 GPa, σy = 35 MPa.  

  Using equation (3.35), w1 = 3.39 mm. 

Step 9: Using equation (3.16), m = 0.61. Using equation (3.36), w1 = 0.78 mm. 

Step 10: Using Figure 3.7 (a), f = 0.04. 

Step 11: Using equation (3.37), Fmax = 1.52 N. 

 Design conclusion: 

Following the steps of this approach and guided by the flow chart, the mechanism 

should be designed and cut with the first segment’s length is 36.03 mm at 30
o
 

angle clockwise and its width is 3.39 mm. The second segment’s length is 22 mm 

at 55
o
 angle counter clockwise and 0.78 mm in width. The actuator must be able 

to provide a force of 1.52 N. 

 

3.3.4 FEA Modeling Using ANSYS Workbench 

 The same example was modeled using the FEA software ANSYS. Table 3.3 compares 

results between the LBCCSM model and FEA showing relatively low error percentage giving 

the fact that the LBCCSM model did not include internal stress analysis nether the design of the 
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living hinges in which both considered future work for this topic. Figure 3.12 shows the results 

from FEA modeling for the maximum y-axis deflecting that correspond to bmax – bi. 

Table 3.3 Example 1: LBCCSM vs FEA results comparisons. 

Type Parameter LBCCSM Model FEA Model Error (%) 

Input bmax - bi 3 mm 2.81 mm 6.33 % 

Output Fmax 1.52 N 1.48 N 2.70 % 

 

 

Figure 3.12 Example 1: FEA maximum vertical displacment. 

 

 Figure 3.13 shows the force-displacement and potential energy curves for the results from 

both the LBCCSM model and the FEA analysis. The x-axis represents the displacement (Δ) with 

respect to the coordinate system at the tip of the moving link shown in Figure 3.12. The force-

displacement curves, shown in dotted lines, follow the left y-axis; whereas the potential energy 

(or work)-displacement curves, shown in dashed lines, follow the right y-axis. For all the curves, 

the bold lines are for the LBCCSM model where the light lines correspond to the FEA modeling.  

 From the background section on bistability, Figure 3.13 represent the typical behavior of 

bistable mechanism under the design loading conditions. When force represented in the plot, 

which is the horizontal applied force at the tip of the moving link (L2), is equal to zero represents 
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an equilibrium state for the mechanism. The stable equilibrium positions of the mechanism occur 

at the local minimum of the potential energy curves where the unstable equilibrium position 

occurs at the local maximum of the same curves [20]. The C-arrow and D-arrow indicate the 

unstable position for the results from the FEA and LBCCSM models, respectively. The location 

difference is in the order of one millimeter apart, which considered acceptable for the design 

giving the fact that LBCCSM model requires less computational time by following the design 

guidelines. The first stable position for both models is the same because of zero applied force; 

the second stable position occurs at Δ≈ -23.8 mm for the FEA model, shown by the B-arrow, and 

at the end of the design input of Δ = 25.2 for the LBCCSM. The reason is that the LBCCSM 

model did not account for the elastic energy absorbed by the Polypropylene material at the living 

hinges, where the accurate FEA analysis showed that absorbed energy indicated by the A-arrow. 

 

Figure 3.13 Example 1: Force-displacment and work-displacment curves. 
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3.4 Second Design Approach 

 In this approach, if the maximum force required to actuate the mechanism and the 

maximum deflection are the primary constraints, then the maximum deflection, actuating force, 

material selection, safety factor and material thickness are considered to be the input parameters 

while the segments’ widths, footprint and the segments’ initial angles are considered as the 

design outputs. 

3.4.1 Flow Chart 

 A flow chart was developed for this approach, as seen in Figure 3.14. This shows the 

input parameters, plots and equations to use, intermediate outputs and final outputs of the design. 

 

Figure 3.14 The design flow chart for the second approach. 
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3.4.2 Step-By-Step Design Guidelines 

 Here are the steps used with the aid of the flow chart in Figure 3.14 and the plots. The 

order in which the inputs and outputs are used is as follows: 

 Input design parameters: 

1- (Δ), the mechanism’s maximum linear deflection [mm]. 

2- (X), the maximum horizontal footprint [mm] shown in Figure 3.2. 

3- (θ1), the initial angle of segment 1 [deg]. 

4- (Fmax), the maximum actuation forces required [N].  

5- The material’s mechanical properties and safety factor. 

6- (t), the material thickness [mm]. 

 Output design parameters: 

1- (L1 and L2), the segments’ length [mm]. 

2- (θ2i), the segments’ initial angle [deg]. 

3- (v), the stiffness coefficient ratio. 

4- (bmax), the maximum vertical footprint [mm] shown in Figure 3.2. 

5- (w1 and w2), the segments’ width [mm]. 

 

Step 1 through Step 5 is the same as in the first approach. 

Step 6a: Specify the maximum force (Fmax) limited by the design, i.e. actuator force limit along 

with the material used to manufacture the mechanism and its properties, safety factor and 

material thickness (t). Knowing those inputs, calculate the non-dimensional coefficient (J) using 

equation (3.38). This equation was derived from combining both equations (3.35 and 3.37). 
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 (3.38) 

       Unitless Force        Material Flexibility Index 

Step 7 through Step 9 is the same as in the first approach. 

Step 10: Use the part of Figure 3.5 that is for the selected (θ1) along with the stiffness coefficient 

ratio (v) and (θ2i) to find the value of the mechanism’s maximum height (bmax).  

3.4.3 Design Example 

 Using the flow chart as guidance, an example is given to illustrate the walk-through 

between the design plots and equations for this design approach using the LBCCSM model. 

 Design statement: 

A linear bistable mechanism needs to be designed. The distance between the two 

stable points is 55 mm and the mechanism should fit in a length of 70 mm. The 

actuator used has a maximum force output of 2 N. The mechanism is laser cut 

from a 7 mm thick Polypropylene sheet with design safety factor of 1.5. 

 Design inputs: 

Δ = 55 mm, X = 70 mm, Fmax = 2 N, t = 7 mm and SF = 1.5 

γ = ρ = 0.85 and KΘ = 2.65 from the PRBM [1]. 

 Design solution: 

Step 1: Δ = 55 mm and X = 70 mm. 

Step 2: From Table 3.1, θ1 = 50
o
 for intermediate footprint. 

Step 3: Using equation (3.32), L1 = 66.12 mm. 

Step 4: Using equation (3.33), L2 = 57.63 mm 

Step 5: Using equation (3.34), θ2i = 61.5
o
. 

Step 6a: Using equation (3.38), J= 0.62. 
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Step 6b: Using Figure 3.9 (a), v = 16. 

Step 7: Using Figure 3.6 (b), Θ1 = 6.52
o
. 

Step 8: Material: Polypropylene, E = 1.35 GPa, σy = 35 MPa, 

 Using equation (3.35), w1 = 4.45 mm. 

Step 9: Using equation (3.16), m = 0.87. Using equation (3.36), w1 = 1.34 mm. 

Step 10: Using Figure 3.5 (b), bmax/X = 0.78, bmax = 54.6 mm and, bi = 50.65 mm. 

 Design conclusion: 

Following the steps of this approach and guided by the flow chart, the mechanism 

should be designed and cut with the first segment’s length is 66.12 mm at 50
o
 

angle clockwise and its width is 4.45 mm. The second segment’s length is 57.63 

mm at 61.5
o
 angle counter and 1.34 mm in width. The mechanism should fit in an 

area of 54.6 mm by 70 mm. 

 

3.4.4 FEA Modeling Using ANSYS Workbench 

 The same example was modeled using FEA. The following Table 3.4 compares results 

between the LBCCSM model and FEA. Errors in the model’s force estimate are relatively high 

because the LBCCSM model uses pin joints instead of short-length flexural pivots as in the FEA 

model. The results show that our model predicts a lower stiffness than the FEA model does, 

means that the use of flexural pivots at hinges B and C, from Figure 3.1, may add flexibility and 

lower stresses. Figure 3.15 shows the FEA results for the maximum y-axis deflecting (bmax – bi); 

whereas Figure 3.16 shows the force-displacment and work-displacment curves for LBCCSM 

and FEA model. The LBCCSM model predection in this example was more accurate in terms of 

the forces due to the use of equation 3.38, whereas in the first example equation 3.37 was used.  
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Table 3.4 Example 2: LBCCSM vs FEA results comparisons. 

Type Parameter LBCCSM Model FEA Model Error (%) 

Input Fmax 2 N 2.19 N 8.67 % 

Output bmax - bi 3.95 mm 4.23 mm 6.62 % 

 

 

Figure 3.15 Example 2: FEA maximum vertical displacment. 

 

 

Figure 3.16 Example 2: Force-displacment and work-displacment curves.  
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CHAPTER 4: SMSF USING LINEAR BISTABLE LINK ELEMENTS
 *
 

 

 This section presents a new concept of a Shape-Morphing Space-frame (SMSF), which is 

a novel application utilizing the Linear Bistable Compliant Crank-Slider Mechanism 

(LBCCSM). The frame’s initial shape is constructed from a single-layer grid of flexures, rigid 

links and LBCCSMs. The grid is bent into the space-frame’s initial cylindrical shape, which can 

morph because of the inclusion of LBCCSMs in its structure. The design parameters consist of 

the frame’s initial height, its tessellation pattern (including bistable elements’ placement), its 

initial diameter, and the final desired shape. The method used in placing the bistable elements is 

a novel contribution to this work as it considers the principal stress trajectories. Two different 

examples of Shape-Morphing Space-frames will be presented, each starting from a cylindrical-

shell space-frame and morphing, one to  a hyperbolic-shell space-frame and the other to a 

spherical-shell space-frame, both morphing by applying moments, which shear the cylindrical 

shell, and forces, which change the cylinder’s radius using Poisson’s effect. Space-frames are 

widely used in structures (roof structure for example) with complex geometries that involve 

heavy computations and optimization using genetic algorithm [25]. 

 The bistability can be achieved by storing and releasing strain energy in its compliant 

segments within the designed range of motion. Such an example of bistable mechanism is the 

Linear Bi-stable Compliant Crank-Slider-Mechanism (LBCCSM), shown in Figure 4.1that can 

produce predictable and controllable length change in mechanical systems, allowing the 

_________________________________ 

* 
This chapter was published previously in [11]. Permission is included in Appendix H. 
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 morphing of its length from one specific length into a different specific length. The analysis 

done in Chapter 3 was on the upper half of the element across the horizontal symmetry line; 

mirroring the design can produce this type of element and it can be design to any specific 

application. 

 

Figure 4.1 LBCCSM elements, (a) Normally open and (b) Normally closed. 

 

 It is good to mention, as we modify the shape of a structure; one important subject that 

needs to be consider is the Poisson effete from the classical mechanics of material theorem. This 

phenomenon describes the change in geometry under the applied load; a positive Poisson would 

be a negative ratio of axial to transvers strain (cylinder under tension would elongate and 

decrease its radius), were the negative Poisson is the vice versa [26]. Describing the vertices 

within a space-frame is done by taking the advantages of the torus geometry. When the product 

of the principal curvature at a vertex is negative, that vertex is on hyperbolic profile where the 

positive product indicates spherical profile as shown in Figure 4.2. 

 

Figure 4.2 Hyperbolic and spherical point on Torus geometry. 
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 This chapter is organized as follows: First, the modeling of the SMSF considering a 

companion of theory from 2-D tessellation, design algorithms and morphing strategies; second, 

two different design examples are shown highlighting the different design approaches if the 

desired final space-frame is a Hyperbolic-Shell or Spherical-Shell; third, results discussion and 

data comparison between the mathematical model and the different prototype constructed; 

finally, some concluding remarks regarding the design of the prototype, in addition to some 

future work that needed to enhance the design model. 

4.1 Methods of SMSF Modeling  

 The methods followed in the SMSF modeling are explained starting with the tessellation 

of the single-layer grid into sub-grid elements, followed by description of the mathematical 

algorithm used accounting for designs inputs, the functionality of types of elements used and a 

model possibility check to ensure the geometry before and after morphing is valid. Design 

strategies are carried out in order to build a prototype of the SMSF. The parameters and 

nomenclatures used in this chapter and their definitions can be found in Appendix A. 

4.1.1 SMSF Tessellation 

 The frame’s initial shape is constructed from a single-layer grid of flexures, rigid links 

and LBCCSMs. To simplify the tessellation of this single-layer grid, a square sub-grid (k x s) is 

considered where single elements of rigid links and LBCCSMs form it. Figure 4.3 shows that a 

single –layer grid (a) is formed by arrays of square sub-grid (b) which consist of 8 different 

elements that could be split in two different way, as shown in (c-1) and (c-2); and in order to 

minimize the number of connection/joint between elements, (c-1) of element arrangement is 

preferred over the (c-2) arrangement. The (c-2) arrangement can be considered as a miniature 

sub-grid of (b) as shown in (d). Because the LBCCSMs are going to be used as the bi-stable 
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elements in the chosen configuration, a study of each single combination between the rigid links 

and the LBCCSMs forming the six elements in Figure 4.3 is carried out considering minimum 

variable links that produce high degrees-of-freedom of the square element. 

 

Figure 4.3 The square tessellations of the single-layer grid. 

 

 In order for a selected square  frame made of six elements to be stable, only five elements 

need to be constrained, thus a and novel method is used in this research to determine which of 

the elements needs to be rigid link and which needs to be bi-stable by using the LBCCSM. For 

any square element, two degrees-of-freedom are located at each corner totaling eight DOF and 

by subtracting two DOF for the position (local origin of the square) and one DOF for orientation 

leaves five total DOF that describe deformation of the square, four DOF for side deformations 

and one DOF for shear deformation. The novel method (
 
 
)  of concept is carried out where (5) 

is the total number of elements that can be selected, four sides and one diagonal, and (n) is the 

number of elements with variable length. In order to choose which of the five elements can be 

selected as a rigid link or considered to be LBCCSM, the different combination between the (
 
 
)  
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is shown in Figure 4.4 .Table 4.1 illustrates each combination by identifying which element is 

being selected as LBCCSM and its type of being a side or a diagonal. Moreover,  it indicate if 

the selected LBCCSMs location would move independently from each other, the ability to be 

arrayed vertically and horizontally, the number of shapes it can form and the possibility to morph 

from its initial square  form to a trapezoidal and parallelogram as a final shape. The ability of the 

sub-grid square being arrayable in certain way is important, for example; in order for two sub-

grid squares to be horizontally arrayable, the right side of the left square should behave the same 

way as the left side of the right square.  

 In order to identify which of the (
 
 
) would best fit the design needs; the proceeding 

sections will explain the design algorithm used and the morph strategies followed to guide this 

selection. In Figure 4.4, Black line (Rigid links), Dashed-Red line (LBCCSM), Solid-blue line 

(Rigid links after morphing the square element), Dashed-blue line (LBCCSM after morphing). 

 

Figure 4.4 The different combination of (
 
 
). 
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Table 4.1 Reference to Figure 4.4, the different combination of  (
 
 
) and their criteria. 

  

 

4.1.2 Design Algorithm 

 Because the start of the design is a single-layer grid formed by (k x s) chain of sub-grid 

square element that would bend into the space-frame’s initial cylindrical shape, it is important to 

identify the design space and limitation to minimize the design possibilities and yet achieve the 

desired outcome. For the purpose of this work and to demonstrate one of the applications of the 

LBCCSMs, the ability to morph a cylindrical-shell to either hyperbolic-shell or spherical-shell 

are considered that shows a change of the shell’s diameter across its height. The space-frame’s 

initial cylindrical shape circumference will be approximated by a polygon, which the number of 

sides (s) is considered as a design input, and because considering the initial and final morph of 

the space-frame to have its two ends identical without morphing, the top and bottom of the s-

sided polygon will be constructed out of individual rigid links joined by its end. The initial 

ref. 
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height (ho) of the cylinder will be divided into (k) slices with vertical elements that are of rigid 

links to provide stability to the space-frame and to act as force transmitter. The height of each 

slice will be equal to the length of the polygon’s side (ls) because a square sub-grid was the 

chosen shape.  

 Moreover, the three other inputs of the design are the initial radius of the circumscribed 

circle (ρo), the change in radius (Δμ) and the two ends of the space-frame plane’s relative rotation 

(Δτ) as shown in Figure 4.5for the hyperbolic-shell morph and Figure 4.6 for the spherical-shell 

morph. This relative rotation of the planes is the main control in morphing the space-frame and 

it’s carried out using the applied rotation at the ends.   

 

Figure 4.5 The parameters used to define the SMSF in the hyperbolic-shell morphing. 

 

Figure 4.6 The parameters used to define the SMSF in the spherical-shell morphing. 
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 The mathematical modeling was done using Matlab utilizing the polygon’s geometry to 

locate each point on the initial space-frame and the corresponding location for that point on the 

space-frame’s final shape. Lines then connects those points and its lengths are compared to 

calculate the change in length that then would be used in designing the specific LBCCSM for 

that element. Force analysis was not included in this study as this research addresses the 

kinematic use of the LBCCSMs only. The full Matlab code used in this simulation can be found 

in Appendix C.8. 

 The following are the main Matlab code equations from the polygon’s geometry: 

            (  ⁄ ) (4.1) 

         (4.2) 

The equation used to describe the profile of the space-frame as a function of (μ) along the height 

to achieve the desired morph: 

  ( )         (  (
 

  
)
 

 (  
  

 
)
 

) (4.3) 

Substituting equation 4.2 into equation 4.3 results in: 

  ( )         (
  (   )

  ) (4.4) 

The sign of the change of radius (Δμ) is important as it determine the final morph shape; 

negative sign will produce a hyperbolic profile where positive sign will produce a spherical 

profile. A Model Possibility Check (MPC) was put into place within the algorithm to check if the 

desired morph would be possible considering (s), (k), (Δμ) and the restriction of the polygons’ 

sides and the vertical elements being a rigid link. 

 (   )                  (
  (   )

  )      If false, then: (4.5) 

 Decrease (s) or/and Decrease (Δμ) or/and Increase (k) 
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 Because the sub-grid is chosen to be square, the initial height of each segment is equal to 

the side length (ls) and the MPC equation ensures that if the vertical rigid elements would lie 

horizontally after morphing the space-frame does not change in length due to the large value of 

(Δμ) of that slice (k). Decreasing (s) will increase the value of (ls) to maintain the initial radius of 

the circumscribed circle (ρo), decreasing (Δμ) will decrease the change in radius at each slice 

insuring the vertical elements remains rigid even if they would lie horizontally. Increasing the 

number of slice (k) will decrease the (Δμ) at each slice insuring vertical links remains rigid. 

4.2 Morphing Strategies  

 The strategy followed in designing the specific SMSFs were purely done from the 

geometrical aspect of the design as this chapter illustrates one of the novel uses of the linear bi-

stable elements LBCCSM.  Placing those LBCCSM determine the final shape of the space-

frame, choosing the appropriate elements configuration within the sub-grade square tessellation 

is carried out in reference to Figure 4.4and Table 4.1. Navigation through this figure and table 

would require some initial design inputs, and the one considered are: 

1- The two ends of the space-frame are considered fixed shape, thus its links are rigid. 

2- The vertical elements are considered rigid as a mean for load transmission and structural 

support, thus all diagonal elements need to be LBCCSMs. 

3- Symmetrical geometry across the plane of mid height, thus an even number of slice (k). 

4- Within the square elements, the diagonal and side LBCCSM elements should move 

independently from each other. 

5- The ability for the sub-grid square to be able to morph to both trapezoid and 

parallelogram shapes. 

6- The end slices are arrayable horizontally only. 
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7- The intermediate slices are arrayable both vertically and horizontally. 

8- If more than one arrangement is found, the arrangement that have the higher number of 

shape formed is considered for more DOF. 

 

Referring to Table 4.1 and Figure 4.4 along with the initial design input, the end slices are 

chosen to be C3 from (
 
 
)  where only one side and the diagonal are LBCCSM. On the other 

hand, the choice of D2 from (
 
 
)  best fits the inputs where two opposite side and the diagonal 

are LBCCSM and its ability to have joint side with the end slices. As shown in Figure 4.1, the 

LBCCSM have two stable positions (normally open and normally closed) with a delta change in 

length, and depending on the initial state of its stable position and location. Four different design 

configurations can be produced out of the LBCCSMs’ two initial stable positions and their two 

locations (diagonal or radial element). The characterization of each design was based on element 

location within the sub-grid square, its initial bi-stable state, directionality after loading, Poisson 

effect and morphed shape as shown in Table 4.2 (a-d). 

Table 4.2 Design configurations for the LBCCSM placement within the square sub-grid. 

 

 

Name Symbol Name Symbol

Name Symbol Name Symbol

(a) Configuration Design 1 (b) Configuration Design 2

Element Location and State SMSF's 

Directionality 

after loading

Element Location and State SMSF's 

Directionality 

after loading

Diagonal 

element initially 

open   (δeio)

Shorter

Diagonal 

element initially 

closed   (δeic)

Longer

Radial element 

initially open   

(ρeio)

Necking

Radial element 

initially open   

(ρeio)

Necking

Poisson Effect: Negative  (-ν) Poisson Effect: Positive (+ν)

Morphed shape fits Hyperbolic profile Morphed shape fits Hyperbolic profile

(c) Configuration Design 3 (d) Configuration Design 4

Element Location and State SMSF's 

Directionality 

after loading

Element Location and State SMSF's 

Directionality 

after loading

Diagonal 

element initially 

open   (δeio)

Shorter

Diagonal 

element initially 

closed   (δeic)

Poisson Effect: Positive  (+ν) Poisson Effect: Negative  (-ν)

Morphed shape fits Spherical profile Design best fits Spherical profile

Longer

Radial element 

initially closed   

(ρeic)

Bulging

Radial element 

initially closed   

(ρeic)

Bulging
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Table 4.2 (Continued) 

 

 

 Figure 4.7 illustrates the type of applied loads for each design to morph the space-frame 

from its initial shape to its final shape; those loads can be applied simultaneously or individually 

depending on the application. The LBCCSM elements are represented as well showing the bi-

stability transformation between the two states of the space-frame. The following section will 

demonstrate two design examples showing the results from the mathematical model and the 

actual prototype. 

 

Figure 4.7 Loading conditions for each of the four design configuration from Table 4.2.  

Name Symbol Name Symbol

Name Symbol Name Symbol

(a) Configuration Design 1 (b) Configuration Design 2

Element Location and State SMSF's 

Directionality 

after loading

Element Location and State SMSF's 

Directionality 

after loading

Diagonal 

element initially 

open   (δeio)

Shorter

Diagonal 

element initially 

closed   (δeic)

Longer

Radial element 

initially open   

(ρeio)

Necking

Radial element 

initially open   

(ρeio)

Necking

Poisson Effect: Negative  (-ν) Poisson Effect: Positive (+ν)

Morphed shape fits Hyperbolic profile Morphed shape fits Hyperbolic profile

(c) Configuration Design 3 (d) Configuration Design 4

Element Location and State SMSF's 

Directionality 

after loading

Element Location and State SMSF's 

Directionality 

after loading

Diagonal 

element initially 

open   (δeio)

Shorter

Diagonal 

element initially 

closed   (δeic)

Poisson Effect: Positive  (+ν) Poisson Effect: Negative  (-ν)

Morphed shape fits Spherical profile Design best fits Spherical profile

Longer

Radial element 

initially closed   

(ρeic)

Bulging

Radial element 

initially closed   

(ρeic)

Bulging
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4.3 Design Examples 

 In this section, two designs were chosen one having a hyperbolic space-frame and a 

spherical space-frame for the other one. Because there are two design of each space-frame, the 

hyperbolic example was taken with negative Poisson effect where the spherical example 

addresses the positive Poisson effect. Initial design parameter where for both example are chosen 

to be similar with minor different as followed: 

 Number of sides of the polygon (s) = 10. 

 Number of slices (k) = 4. 

 Initial cylinder diameter (ρo) = 300 mm. 

 The change in space-frame diameter at mid height: 

 (Δμ) = -140 mm for the hyperbolic space-frame, and 

 (Δμ) = +140 mm for the spherical space-frame. 

 The change in angle between the end plans (Δτ) = 80
o
. 

 Clockwise for the hyperbolic space-frame, and 

 Counter clockwise for the spherical space-frame. 

 

 The LBCCSM elements were laser cut from a 1/8 inch thick Polypropylene co-polymer 

material where the rigid links were laser cut from a 1/8 inch thick acrylic sheet. Each LBCCSM 

is secured with pin and guide type slider across its length to prevent the out of plane deformation. 

The added guiders do not affect the links’ bi-stability nor translate any force. Individual elements 

are then connected together using fasteners and H-shape joint to give the space-frame the enough 

degrees-of-freedom as spherical joint. The joints are made of Polypropylene material laser cut 

from a 1/16 inch thick sheet and they are flexible that each end can bend and twist independently 

as shown in Figure 4.18. Because the design is symmetrical across the mid-plane, the number of 
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different LBCCSM required is reduced by half. Each end of the cylindrical space-frame is 

secured by decagon plate connected by a low friction shaft to ensure that the two planes remain 

parallel. 

4.3.1 Example 1: Hyperbolic-Shell SMSF 

 The hyperbolic SMSF was chosen to be modeled using the design 1 from Table 4.2 (a). 

The diagonal and radial elements are LBCCSM and vertical elements are rigid link. Because the 

desired applied torque is in the clockwise direction, the LBCCSM elements were placed along 

the diagonal line that shears the square sub-grid the most in order for the actuation can take 

place. Figure 4.8 shows the results of the mathematical algorithm from Matlab, the calculated 

change in length of each element is then tabulated and was used to design the LBCCSM. 

Figure 4.9 shows the constructed single-layer grid in its two dimensional form showing the sub-

grid arraying pattern. The grid is then bent into the space-frame’s initial cylindrical shape as 

shown in Figure 4.10. The torque was applied first to deform the diagonal elements followed by 

radial force to deform the radial element forming the hyperbolic SMSF as shown in Figure 4.11 

and Figure 4.12 respectively. 

    

Figure 4.8 Hyperbolic SMSF using Matlab, Initial state (left) and final state (right). 
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Figure 4.9 The single-layer grid tessellation pattern for the hyperbolic SMSF. 

 

 

Figure 4.10 The hyperbolic SMSF at its initial cylindrical shape before morphing. 
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Figure 4.11 The hyperbolic SMSF after applying clockwise torque loading. 

 

 

Figure 4.12 The hyperbolic SMSF after applying radial loading. 
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4.3.2 Example 2: Spherical-Shell SMSF 

 The spherical SMSF was chosen to be modeled using the design 3 from Table 4.2 (c). 

The diagonal and radial elements are LBCCSM and vertical elements are rigid link. Because the 

desired applied torque is in the counter clockwise direction, the LBCCSM elements were placed 

along the diagonal line that shears the square sub-grid the most in order for the actuation can take 

place. The same procedure as the previous example was followed here; Figure 4.13 shows the 

results of the mathematical algorithm from Matlab, the calculated change in length of each 

element is then tabulated and was used to design the LBCCSM. Figure 4.14 shows the 

constructed single-layer grid in its two dimensional form showing the sub-grid arraying pattern. 

The grid is then bent into the space-frame’s initial cylindrical shape as shown in Figure 4.15. The 

torque load was applied first to deform the diagonal elements followed by axial force to deform 

the radial element forming the spherical SMSF as shown in Figure 4.16 and Figure 4.17 

respectively. 

    

Figure 4.13 Spherical SMSF using Matlab, Initial state (left) and final state (right). 
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Figure 4.14 The single-layer grid tessellation pattern for the spherical SMSF. 

 

 

Figure 4.15 The spherical SMSF at its initial cylindrical shape before morphing. 
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Figure 4.16 The spherical SMSF after applying counter-clockwise torque loading. 

 

 

Figure 4.17 The spherical SMSF after applying vertical loading. 
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4.4 Results and Discussion 

 The results between the mathematical model and the prototype are addressed from a 

geometrical point of view. The results were expected to be different between both methods; the 

mathematical model takes into account that links are lines and connected to each other by a 

vertex and act as a spherical joint. Where the prototype is constructed using H-shaped, which we 

think it’s the source of most of the error, joints that are not optimized or included in the 

mathematical model which is not the purpose of this research and might be consider as a future 

work. Moreover, the prototype gains extra height due to those H-joins along with its effect on the 

change in radii; thus the comparison between the two methods of each example is done using the 

percentage error of the relative change between the geometrical values of the SMSF as shown in 

Table 4.3. 

Table 4.3 Measurements comparison between the mathematical model and the prototype. 

 

 

 

Figure 4.18 H-shape joint used in space-frame and its DOFs.  

Geometrical 

Measurements
ho hf hf/ho ρo ρf ρf/ρo ρf-ρo

Matlab 370.82 299.09 0.81 150 80 0.53 -70

Prototype 445 380 0.85 185 120 0.65 -65

% error 5.55 17.78

Geometrical 

Measurements
ho hf hf/ho ρo ρf ρf/ρo ρf-ρo

Matlab 370.82 201.23 0.54 150 220 1.47 70

Prototype 455 300 0.66 185 250 1.35 65

% error 17.70 8.53
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CHAPTER 5: SMSF USING QUADRILATERAL BISTABLE UNITCELL ELEMENTS 

 

  In this chapter, using the knowledge gained from the previous chapters in dealing with 

the space-frame shape morphing (SMSF); a new concept of shape morphing is advanced. 

5.1 Proof of Concept: Designing and Modeling 

  The problem description for this chapter is to design a disk like structure with the ability 

to morph into a sphere. Or specifically, the circumference of a disk structure is approximated by 

a ten-sided polygon that would then morph into a hollow sphere structure that is approximated 

by 60-sided polyhedron. The disk-to-sphere structure is tessellated into ten sides for the latitudes 

circles and 12 sides for the longitude circles; the disk’s thickness and radius are chosen at the 

design stage. The strategy in morphing the initial shape of the structure (disk) into its final shape 

(sphere) is that the radial lines on the surface of the disk bend but do not stretch, whereas the 

circumferential lines compress. Moreover, the radial lines on the disk become longitude lines on 

the sphere and the circumferential lines become latitude lines on the sphere. The disk‘s thickness 

splits in half, the upper half becomes the thickness of the upper hemisphere and the lower half 

becomes the thickness of the lower hemisphere. The proceeding sub-sections discuss the steps 

used in disk tessellation and the detailed morphing strategies. The nomenclature used in this 

chapter can be found in the Appendix A. 

5.1.1 Disk Tessellation 

 Because the disk has a given thickness, the projection of it, which is a circle, is 

tessellated. To better understand the topology involved in morphing the disk into a hemisphere, 
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geometrical analysis was carried out using the known equations of circles and spheres by 

correlating them to each other using their parameters shown in Figure 5.1 (a). 

 

Figure 5.1 Disk-to-Sphere’s, (a) original and (b) approximated geometry. 

 

 As it was stated before and to avoid using curved link mechanisms, polygons will be used 

to approximate the circles that construct the disk as shown in Figure 5.1 (b). The advantages of 

using polygons for circle approximation are not only limited to the use of straight link 

mechanism but also a measure of refine the design and knowing its limitations. Increasing the 

number of sides will refine the circle approximation and will also increase the number of unit-

cells and increase the complexity of the design, vice-versa. The following are the steps used to 

construct the disk tessellation using the computer aided design software Solidworks; dimensions 

used are also noted along with the explanation of how those parameters affect the final design. 

Step 1: A regular ten-sided polygon is used with a circumscribed circle radius (Rc) of 150 mm 

was chosen (the same size as was chosen for the shell SMSF in Chapter 4).  

Step 2: In order to make the polygon’s structure manageable, two smaller ten-sided polygons 

were constructed inside one another with a difference of 50 mm, as shown in Figure 5.2. 

Increasing the number of intermediate polygons will refine the hemisphere’s outer curvature. 
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Figure 5.2 Top view of the three ten-sided polygons, lengths are in mm. 

 

Step 3: A design choice of 50 mm was given to the disk’s half thickness (to be consistent with 

the three polygons’ offset dimension) and, by connecting the nodes (the vertices of the polygons) 

by straight lines; a polygon sector can be constructed as shown in Figure 5.3. The polygon will 

have ten identical sectors and, for clarity, only one is shown along with lines notation.   

 

Figure 5.3 The constructed wireframe for the polygon's sector with notations. 
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Step 4: A design choice at this stage should be made as in which of the lines should be variable 

and which should be fixed in length. The thickness of the disk-to-sphere structure is considered 

to be fixed in this design example; thus, the lines (a, b and d) 2 and 4 and d1, shown in Figure 5.3, 

are equal 50 mm. Figure 5.4 shows the side view of the sector’s backside wireframe after 

morphing; the radius of the hemisphere (Rs) can be determined geometrically. As mentioned 

before (the radial lines on the surface of the disk bend and do not stretch), the lines (ab, bc and 

cd) 3, shown in Figure 5.3, would bend to approximate half arc and similarly for lines (ab, bc and 

cd) 2. Because those three lines are considered equal to one another and fixed in length (50 mm), 

the outside radius of the hemisphere will be 96.59 mm. 

 

Figure 5.4 The sector’s wireframe back surface shown from the side view. 

 

Step 5: After the determination of the hemisphere radius, another ten-sided polygon is drawn on 

the top view that is in Figure 5.4 with a circumscribed circle radius (Rs) of 95.49 mm. The nodes 

are then connected together forming the morphed sector as shown in Figure 5.5. 

 

Figure 5.5 The morphed sector's wireframe to wedge. 
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Step 6: Having the wireframe’s sector in its two positions (before and after morphing), Table 5.1 

is constructed showing the dimensions different of each link between the initial and final shape. 

Moreover, given this data, we can analyze how TA and TB can morph from a trapezoidal prism 

to a quadrilateral-base pyramid; similarly the morphing of TC from the triangular prism to the 

triangular-base pyramid. The following section will discuss the morphing strategies involved. 

Table 5.1 The wireframe dimensions in the initial and final state of the sector. 

 

 

 

a1 92.71 28.12

a2 50 50

a3 92.71 59.02

a4 50 50

ab1 50 23.55

ab2 50 50

ab3 50 50

ab4 50 23.55

b1 61.8 24.35

b2 50 50

b3 61.8 51.11

b4 50 50

bc1 50 23.55

bc2 50 50

bc3 50 50

bc4 50 23.55

c1 30.9 14.06

c2 50 50

c3 30.9 29.51

c4 50 50

cd1 50 23.55

cd2 50 50

cd3 50 50

cd4 50 23.55

d1 50 50

TB / TC

TC

@ Hemisphere@ Disk

Length (mm)
Link 

Name
Segment

TA

TA / TB

TB
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5.1.2 Morphing Strategies 

 In this section, analysis will be carried out on how a trapezoidal prism can be morphed 

into a quadrilateral-base pyramid and a triangular prism into a triangular-base pyramid. To 

understand the problem with clarity, working with a regular three-dimensional wireframe, such 

as a cube instead of the trapezoidal prism, will provide a general insight on the degrees-of-

freedom and what are the parameters involved to control the movements of each link within the 

wireframe. Section 4.1.1 explained that a quadrilateral two-dimensional frame made of six links 

(four sides and two diagonal) will have (-1) degree-of-freedom; thus, only five links are needed 

to fully define the frame making it a structure with zero degrees-of-freedom and leading to the 

method of (
 
 
), which was discussed in depth. Following the similar method, the same five links 

are used (four sides and a diagonal) but in this case it extends to the third dimension by giving it 

a depth as shown in Figure 5.6.  

 

Figure 5.6 Quadrilateral structure in its 2D and 3D form. 

 

The mobility equations will remain the same as the planar case because all the pin joints and 

links are collinear. The method of (
 
 
) is also applicable in this situation, where n is the number 

of surfaces that need to change length. The analysis of the cube can be extended to the 

trapezoidal prism because it is a special case from where two opposite surfaces are inclined 

inward or outward from one another. 
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 In the case of the triangular prism, the two-dimensional aspect shows that if three links 

were connected in a loop with three pin joints between each link, it will result in a structure with 

zero degrees-of-freedom. Adding a third dimension by giving it a thickness will result in three 

surfaces connected in a loop with three hinges; it is also a structure as shown in Figure 5.7. 

 

Figure 5.7 Triangular structure in its 2D and 3D form. 

 

From Figure 5.3, the chosen sector consists of three segments in which TA and TB is a 

trapezoidal prism sharing a surface, and TC is a triangular prism sharing one surface with the 

TB. Figure 5.8 shows the 11 different surfaces needed to construct the one out of ten sectors.  

 

Figure 5.8 Shows the 11 planes needed to construct the sector's structure. 
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Analyzing the sector in general, it can be considered as one large triangular prism in which only 

three surfaces can be used to construct it, eliminating the need for the intermediate surfaces and 

reducing it from 11 to three. Regardless if the surfaces are curved or planer, the triangular prism 

sector will remain a structure before and after the morph, as shown in Figure 5.9. The kinematics 

involved in constructing the surface on one hand and its compliancy on the other hand, will be 

analyzed based on each segment’s individual morph behavior.  

 

Figure 5.9 Shows the nodes and planes in (a) sector, (b) wedge. 

 

5.2 Mechanism Synthesis 

 The mechanism synthesis involved in morphing the planes is investigated using 

kinematic graphic design. Because the sector in Figure 5.9 is composed of three surfaces (P1, P2 

and P3), where P2 and P3 are similar in design and behavior, controlling the nodes (n1 to n6) via a 

compliant mechanism will allow the required relative displacement between the nodes, as in 

Table 5.1 in the form of length change for each link. It is possible to solve this problem using the 

linear bistable link elements (LBCCSM) introduced in Chapter 3, which results in a much more 
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complicated spatial mechanism with its associated degrees-of-freedom and will increase the 

number of elements needed to assemble a prototype. Using the concept of a cell element reduces 

the number elements needed for the design and assembly. Figure 5.10 illustrates the area of the 

unit-cell in which a mechanism connecting the nodes (vertices) should fi, morphing P1 from a 

rectangular to a trapezoidal cell element P’1 and P2 from a rectangular to an arched rectangular 

cell element P’2. Four extra intermediate nodes are added for P2 and P3 corresponding to the disk 

tessellation described in section 5.1.1. 

 

Figure 5.10 The initial and final state of plans (a) P1, (b) P2. 

 

5.3 Type and Dimension Synthesis 

 Identifying the unit-cell’s initial and final state was a key step in the mechanism type 

selection process. Summarizing the information from Figure 5.3, Figure 5.9 and Figure 5.10 

along with Table 5.1 into Table 5.2, guided the mechanism type selection in terms of design 

choices and constraints. 
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Table 5.2 The dimensions involved in Figure 5.10. 

 

 

 The mechanisms’ parameters from Table 5.2 are written in the form of constraints: 

 Constraint #1 for P1: The relative displacement between nodes (n1, n3) and (n2, n4) should 

be zero. 

 Constraint #2 for P1: The relative displacement between nodes (n1, n2) and (n3, n4) should 

be collinear and toward each other.  

 Constraint #3 for P2 and P3: The relative displacement between each consecutive node 

should be zero except between nodes (n2, i2), (i2, i4) and (i4, n6) which should be collinear 

and toward each other. 

 Constraint #4 for all the nodes: If the relative displacement between two nodes is zero (no 

length change), then a single rigid link can be used to connect both nodes. Two or more 

rigid links can be used to link between the nodes that have collinear relative displacement 

(collinear length change between nodes); therefore, a minimum of one extra node should 

be introduced between the original two nodes. Figure 5.11 shows the rigid links and 

Initial Final

Figure 5.9 Figure 5.3

n1 n2 a1 92.71 28.12 64.59

n2 n4 a2 50 50 0

n4 n3 a3 92.71 59.02 33.69

n3 n1 a4 50 50 0

n2 n4 a2 50 50 0

n4 i1 ab2 50 50 0

i1 i3 bc2 50 50 0

i3 n5 cd2 50 50 0

n5 n6 d1 50 50 0

n6 i4 cd1 50 23.55 26.45

i4 i2 bc1 50 23.55 26.45

i2 n2 ab1 50 23.55 26.45

i1 i2 b2 50 50 0

i3 i4 c2 50 50 0

Δ Length 

(mm)

P1

Connectoin 

between Nodes

Figure 5.10

P2

Length (mm)Link     

name
Plane

Table 5.1
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identifies the minimum number of external nodes for each mechanism within P1 and P2. 

A minimum of six external nodes for P1 and five external nodes for P2 must be used in 

the prospective mechanism; those nodes are translated to be living hinges connecting the 

compliant links. 

 

Figure 5.11 Rigid links and nodes in (a) P1, (b) P2. 

 

 Constraint #5: The mechanism should be contained within the assigned surfaces (P1, P2 

and P3) and its links should not interfere with each other, i.e. links should not cross to 

enable single plane fully compliant manufacture. 

 

 Furthermore, a one-degree-of-freedom mechanism should be considered because the 

mechanism is the unit-cell, and to reduce the number of actuators required to control the overall 

design. The most important constraint is the ability to laser cut the mechanism from a single 

sheet of polymer; this requires the mechanism to be planar and single layer. Solving the 

kinematic equations for an unknown mechanism, where only the initial and final state of four of 

its nodes is given, turns the problem into a mechanism synthesis. Furthermore, solving for the 
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links’ shape, interferences, overlapping, and the containment of the mechanism within a specific 

footprint requires extensive formulation and coding. 

5.3.1 The Synthesis of P1 

 For proof of concept, the approach followed in solving this design problem for P1 was 

simplified by the use of existing mechanisms and the use of Solidworks CAD software. From the 

Design of Machinery [60], the number of single-degree-of-freedom mechanism and its valid 

isomers possible for the four-bar, six-bar, eight-bar, ten-bar, and twelve-bar linkages are, 

respectively: 1,2,16,230 and 6856. Analyzing each isomer as a potential solution was done both 

deductively and via Solidworks. Figure 5.12 shows the four-bar and six-bar isomers for one 

degree-of-freedom mechanism. 

 

Figure 5.12 The four-bar and six-bar isomers for one DOF mechanism, adapted from [60]. 

 

 If four of the outside pin joints of the mechanism are considered to be the nodes of P1, 

then the four-bar mechanism cannot be utilized because its fixed length sides do not allow the 

change from rectangle to trapezoid. In the Stephenson’s six-bar isomer, Figure 5.12 (b), there are 

five outer nodes, which violate constraint #4, which calls for a minimum of six outer nodes for it 

to satisfy P1 design, as shown in Figure 5.11. In Watt’s six-bar isomer in Figure 5.12 (c), there 
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are six outer nodes, which satisfy the minimum nodes requirement in constraint #4 and there are 

three ways to arrange those nodes.  

 The first arrangement involves taking nodes (J2, J1), shown in Figure 5.12, as (n1, n3), 

shown in Figure 5.10, and (J4, J5) as (n2, n4) which does not satisfy constraint #2 due to its scissor 

type motion between (J1, J5) and (J2, J4) where one moves inward forcing the other to move 

outward. The second arrangement involves taking nodes (J1, J6) as (n1, n3) and (J3, J4) as (n2, n4), 

which satisfies constraint #1, #2 and #4. The satisfaction of the 5
th

 constraint can be verified 

graphically by means of the CAD software using the following steps: 

Step 1: The initial and final state of the mechanism is drawn using the dimensions provided in 

Table 5.2, as shown in Figure 5.13 (a). The solid lines represent rigid links and the dashed lines 

are drawn to represent the area where the mechanism should be contained. 

Step 2: Drawing the rest of the links’ schematic according to Figure 5.12 (c) without any 

dimensions or constraints on both P1 and P’1, as shown in Figure 5.13 (b). 

Step 3: Using a feature in Solidworks that allows the selection of two lines and constrain them to 

be equal is carried out between each link in P1 and the corresponding link in P’1, as shown in 

Figure 5.13 (c). This is an effective way to figure out the dimensions associated with each link 

without solving for the kinematic equation. 

Step 4: The constructed mechanism is then manipulated in Solidworks to it fit within the 

assigned area in both states. 

The result of this second arrangement violates constraint #5, as shown in Figure 5.13 (c); the 

length of the dotted link is not the same between P1 and the corresponding link in P’1. At the 

current length, the mechanism is contained within the assigned area but once the final equal link 

constrain is added, the mechanism is driven out of bound. The third arrangement is a mirror of 
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the second and also violates constraint #5; thus, both isomers of the six-bar mechanism with one 

degree-of-freedom cannot be used in the required design. 

 

Figure 5.13 P1 mechanism, (a) boundary, (b) without constraints, (c) constrained. 

 

 For the reason that neither the four-bar nor the six-bar mechanisms satisfied the required 

constraints, the eight-bar mechanism with its 16 isomers, shown in Figure 5.14 (a-p), are 

analyzed individually using the same methodology and reduced according to the following two 

observations: 

1- Isomers with less than five outer nodes are eliminated, shown in Figure 5.14 (e, g and p). 
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2- Isomers with quaternary link, which is the link that connects to other links at four nodes, 

are eliminated, shown in Figure 5.14 (f, h, i, j, k, l and m), due to the extra constraints 

needed in Solidworks to match the initial and final state of the mechanism. Unlike the 

ternary link where fixing its three sides fixes the link. 

 

After studying the remaining isomers shown in Figure 5.14 (a, b, c, d, n and o), it was concluded 

that isomer (a) can provide the solution to the given problem satisfying all the constraint and 

dimensions required by the design. This solution will be discussed thoroughly. 

 

Figure 5.14 The eight-bar mechanism with its 16 isomers, adapted from [60]. 
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Figure 5.15, with reference to Figure 5.14 (a) , shows the results after following the four steps 

involved in the 2
nd

 arrangement of Watt’s six-bar isomer where the five constrains are verified 

and met in this design arrangement. 

 

Figure 5.15 P1 schematics with eight-bar mechanism and links' notation.  

 

 To fully define the sketch in Solidworks, Table 5.3 illustrates the additional constraints 

added to the lines in both P1 and P’1. 

Table 5.3 P1 with eight-bar mechanism constraints. 

 

Collinear l 4 l 7

Collinear l 81 l 43

Angle = 60
O l 1 l 51

Vertical

Vertical

Equal l 53 l 84

Equal l 43 l 63

Horizontal

Horizontal

Angle = 60
O l 1 l 51

Collinear l 43 l 63

Collinear l 84 l 43

Collinear l 53 l 63

l 2

l 52

l 81
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 Figure 5.16 shows the fully defined mechanism’s arrangement, and at this stage of the 

design, all the lines are considered rigid links and all the nodes are pin joints. On that note, 

Figure 5.17 illustrate the mechanism’s movement using five different translational positions from 

its initial state in P1 to its final state in P’1. 

 

Figure 5.16 P1 final mechanism in its initial and final state. 

 

   

   

Figure 5.17 P1 mechanism’s movement using five different translational positions. 
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 The final stage of the design involves converting the mechanism’s linkages to compliant 

segments where the pin joints are replaced with flexural pivots. The design of those flexural 

pivots is done in Solidworks to meet the laser cutter’s limitations. Stress concentration, fatigue 

and durability analysis are not included in this design and will be considered in future work on 

this topic. Figure 5.18 (a-c) shows the development of the design from the concluded outline of 

the mechanism in (a) to the complete design in a compliant form in (c); the full dimension of this 

design is shown in Appendix E.1.  

 

Figure 5.18 P1 mechanism from outline to a fully compliant mechanism. 

 

 It is good to mention that some of the disqualified isomers can work for small length 

change between nodes (n1, n2) and (n3, n4). The proposed design procedures can guide the 

mechanism selection, which for proof of concept is faster than solving for it. Involving the 
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kinematic, kinetic and stress analysis is possible if solving for a specific application. The 

bistability analysis for this design is discussed in the next chapter. 

5.3.2 The Synthesis of P2 and P3 

 The synthesis of the remaining two planes P2 and P3 of the sector in Figure 5.9 is 

described in this section. Because the planes are identical, the analysis of one plane can be 

applied to the other without any modification. In order for P2 to change its initial state from 

rectangular to an arched rectangular cell element P’2, it was divided into three equal parts as per 

the disk tessellation described in section 5.1.1. Referring to Table 5.2 and constraint #3 for P2 

and P3 from section 5.3 that state “the relative displacement between each consecutive node 

should be zero except between nodes (n2, i2), (i2, i4) and (i4, n6) should be collinear and toward 

each other”, requires that a minimum of one extra node should be placed between the nodes with 

collinear displacement. The analysis of P2S1 section, shown in Figure 5.19, is carried as an 

individual unit-cell and applied to the rest of the two sections P2S2 and P2S3.  

 

Figure 5.19 Shows the sub-section of P2 for synthesis. 

 

 The four-bar mechanism cannot be applied due to its four sides being rigid; where in 

section P2S1 one side should have the ability to displace inward. On the other hand, Stephenson’s 
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six-bar isomer Figure 5.12 (b) satisfies the minimum requirement of five outer nodes along with 

the constraint #3. Figure 5.20 shows the mechanism in Solidworks in the initial and final state 

with the inner links constrained to be equal; thus satisfying constraint #5.  

 

Figure 5.20 Shows P2S1, (a) its boundary, (b) fitted Stephenson’s six-bar isomer. 

 

 This mechanism has one degree-of-freedom through its six links and seven joints; and 

because the design requires the unit-cells to be bistable, the mechanism should be a structure 

with zero degree-of-freedom in its initial and final state. Analyzing the mechanism using the 

graph theory where links and joints are represented by points and lines respectively [70], gives 

an alternative way to develop mechanisms undergoing certain constraints. Figure 5.21 illustrates 

the example of Stephenson’s six-bar isomer using the graph theory.   

 

Figure 5.21 Stephenson’s six-bar isomer in graph theory, adapted from [70]. 
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 A mechanism with five links connected in loop satisfies the minimum of five outer nodes 

(or joints) but would have two degrees-of-freedom, as shown in Figure 5.22 (a). Adding two 

links and four joints to the mechanism will reduce the mobility to zero, which in graph theory 

means two points and four lines respectively need to be added. Considering the symmetry in the 

design, those two points (or links) can be placed either inside the loop or outside, as shown in 

Figure 5.22 (b). Similarly for the four lines (or joints), two lines should be added in either side of 

the symmetry line and should avoid a three line loop when connecting otherwise, it will result in 

three links connected in a loop turning it into a single link. Figure 5.22 (c) shows the two 

possibilities of the mechanism which in fact are identical to one another, where Figure 5.22 (d) 

shows the final mechanism schematics in reference to its graph theory representation. 

 

Figure 5.22 Converting five-bar mechanism into a zero-mobility mechanism. 
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Figure 5.22 (Continued) 

 

 The new mechanism will have seven links and nine joints resulting in zero degree-of-

freedom, as shown in Figure 5.23. The stress concentration, fatigue and durability analysis of this 

mechanism is considered a future work for this topic. To fully define the sketch in Solidworks, 

Table 5.4 illustrates the additional constraints added to the lines in both P2S1 and P’2S1; the 

dashed lines are not those of the mechanism but for constraints purposes. 

 The final stage of the design involves converting the mechanism’s linkages to compliant 

segments. Figure 5.24 (a-c) shows the development of the design from the outline of the 

mechanism in (a) to the complete design in a compliant form in (c); the full dimension of this 

design is referenced in Appendix E.2.  

 

Figure 5.23 P2S1 schematics with seven-bar mechanism and links' notation. 
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Table 5.4 P2S1 with seven-bar mechanism constraints. 

 

 

 

Figure 5.24 P2S1 mechanism construction from outline to a fully compliant mechanism. 

 

5.4 Design Prototypes and Fabrication 

 Building the shape-shifting space-frame prototype was the next step after it was designed; 

this section illustrates the fabrication procedures involved. The process involves laser cutting the 

bistable unit-cells from the sheet of material in two-dimensional and then construct the three-

dimensional SMSF. Material selection is important for this type of design; the compliant 

mechanism is based on replacing mechanical joints with living hinges that should endure 

Equal l 42 l 52

Equal l 41 l 51

Equal

Equal l 22 l 23

Vertical

Vertical

Horizontal

Angle = 24
O l 22 l 21

Angle = 24
O l 23 l 21

Angle = 43.96
O l 6 l 7

Length = 25 mm l 22 l 23

l 6 l 7  l 43  l 53

l 3

l 21

Plane 

Location
Constraint Type Between Entities

l 1

P1S1



www.manaraa.com

 

94 

material deformation and fatigue during actuation. Therefore, Polypropylene Copolymer was 

chosen due to its high flexural modulus of 145,000 psi and that is can withstand up to 10% of 

elongation before break; the full data sheet and physical properties from the manufacturer can be 

found in Appendix F. The unit-cells are modeled in Solidworks and saved in DXF format then 

imported to the laser machine for cutting. For illustration purposes, each of the mechanisms 

forming the planes P1, P2 and P3, as shown in Figure 5.9, are introduced separately with the 

actual bistable unit-cell.    

 Figure 5.10 (a) and Figure 5.18 (c), reference the mechanism required to morph the unit 

cell within P1 from a rectangular to a trapezoidal cell element; Figure 5.25 shows the actual 

prototype in its two states. There are two additional links added to the actual prototype to provide 

the bistability feature; the placement of those two links will be discussed in the next chapter. 

 

Figure 5.25 P1 mechanism cut from Polypropylene Copolymer sheet. 

 

 For the plane P2, in reference to Figure 5.10 (b) and Figure 5.24 (c), the analysis of P2S1 

section is patterned into the other two sections P2S2 and P2S3 as shown in Figure 5.26. The 

prototype demonstrates the mechanism’s ability to morph the unit-cell from a rectangular to an 

arched rectangular cell element with a 90-degree angle. The mechanism design and prototype for 

P2 is duplicated for the third surface P3. 
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Figure 5.26 P2 mechanism cut from Polypropylene Copolymer sheet. 

 

 The next step is constructing the sector shown in Figure 5.9 and, because the disk 

tessellation requires ten identical sectors, minimizing the number of connections between sectors 

is important. For this reason, each sector is flattened where the mechanism of P1 is in the middle 

and the other two mechanisms of P2 and P3 are in either side as shown in Figure 5.27. Joining the 

two ends of the final mechanism forms the sector shown from the top view in Figure 5.28. 

 

Figure 5.27 The flattened mechanism of the sector. 

 

 Figure 5.29 shows the isometric view of the final mechanism in its initial state as a sector 

to its final morphed state as a wedge with a 90-degree arc. The designs of the bistable elements 

within the mechanisms are introduced in next chapter.  
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Figure 5.28 The connected mechanism of the sector from top view. 

 

 

Figure 5.29 The sector's mechanism in initial and final state. 

 

 

Figure 5.30 The sector's mechanism in the final showing the 90-degree bend. 
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 It becomes clear that if the sectors where to be arranged in a circular pattern, they will 

form a disk and the wedges will form a spherical shape. Two prototypes were made with two 

different sectors’ arrangement; the following sub-sections will discuss each arrangement 

individually with figure illustrations. Figure 5.31 shows the process of laser cutting the ten 

sectors from the Polypropylene Copolymer sheets. 

   

Figure 5.31 Laser cutting the mechanisms from Polypropylene Copolymer sheets. 

 

5.4.1 One Disk to Hemisphere SMSF 

 The sectors’ arrangement in this prototype involves connecting all ten together in a 

circular pattern as one single layer to form a disk that can morph to a hemisphere. The 

connections between sectors are done using zip ties through three circular cuts made at the top of 

each sector. Figure 5.32 shows the assembled prototype in its initial disk state from isometric and 

top view, while Figure 5.33 shows the prototype in its final hemisphere shape after morph. 

 The actuation of this prototype is done manually; an inward radial force is applied to the 

sector from nodes n1 and n2, as shown in Figure 5.9, via a connected cable that runs to the center 

of the mechanism. An animated motion of a simplified sector frame is done using Solidworks, as 

shown in Figure 5.34, illustrating the directions of force and displacement involved. The 
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horizontal support is the table where the prototype is laying on and the vertical support with 

groove represents the other nine sectors that are a connected circular pattern. The center point of 

the disk will translate vertically due to the symmetry in both design and applied forces around 

the disk’s vertical axis. The ten cables connected from the disk’s bottom vertices are joined at the 

center and passed through an opening in the table; applying a tension downward will translate to 

an inward radial force at the bottom vertices which can slide along the table’s surface. 

   

Figure 5.32 One-Disk SMSF initial state (left) isometric view, (right) top view. 

 

   

Figure 5.33 One-Disk SMSF final state (left) isometric view, (right) top view. 
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Figure 5.34 Solidworks simulation of the sector's wireframe actuation. 
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 Figure 5.35 is taken from the actual prototype’s actuation, at different time frames, 

showing the disk SMSF morph into a hemisphere. In black is the prototype and the white lines 

are the actual cables connected at the bottom vertices which runs into the center down through 

the table with maximum applied tension of 40 lbf, measured via load scale. 

   

   

Figure 5.35 One-Disk SMSF prototype actuation. 

 

5.4.2 Two Disks to Sphere SMSF  

 The other possible arrangement involves constructing a set of two disks; where each disk 

is composed of five sectors arranged in a circular pattern with equal spacing. Both disks are 

placed on top of each other as two layers with one sector rotational offset. Therefore, for each 

disk with five sectors equally spaced, a gap will form between every two sectors and by placing 
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another five sectors disk in such a way that should cover the gaps in the first disk, as shown in 

Figure 5.36 via isometric and top view. This arrangement gives the prototype the possibility to 

morph the structure a from two-layer disks to a sphere, as shown in Figure 5.37. The actuation 

for this prototype will be discussed in the following section in details along with experimental 

testing. 

   

Figure 5.36 Two-Disk SMSF initial state (left) isometric view, (right) top view. 

 

   

Figure 5.37 Two-Disk SMSF final state (left) isometric view, (right) top view. 
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5.5 Spherical SMSF: Force-Displacement Analysis 

 Actuating the spherical SMSF is similar to the hemisphere’s actuation but in this case, 

two hemispheres are connected together symmetrically across the plane. The two disks are 

connected together using the sectors’ vertices located mid-plane; to do that, two simple 

alterations were done on the original sector’s mechanism without affecting the mechanisms 

dynamics. The first alteration, shown in Figure 5.38, is adding small material extension at the 

vertices with a circular cutout inside it to act as a hinge between the two disks and a connection 

point for the cables. The second alteration is extending the adjacent mechanisms’ bottom section 

as a support and protection for the hinges.  

 

Figure 5.38 Modified sector's mechanism (left) top view, (right) isometric view. 

 

 Figure 5.39 shows the connection between both disks utilizing the first alteration as 

hinges when the cables are secured and passed through the center using an aluminum disk as a 

ground support. The cables from each vertex are passed in an alternating manner from above and 

below the support through an opening within it. As a result, five cables will be pulled upward 

that actuate half of the sectors and the other five cables are pulled downward to actuate the 

remaining sectors. 
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Figure 5.39 The cables’ path within the mechanisms. 

 

 Assembling the spherical SMSF in this manner allows the use of a tensile machine to 

provide tension at both ends of the cables for the prototype’s actuation. The experimental setups 

involved securing the SMSF’s cables from both ends to the tensile machine and apply the 

vertical displacement. Figure 5.40 was taken while the test was in progress showing the SMSF 

when in its initial state as a disk and then in its final state as a sphere.  

 In the experiment, the actuation was carried out at four different rates of applied 

displacement to observe the force behavior at each rate. Figure 5.41 shows the force-

displacement results at each rate combined into one plot for compression; the actual 

experimental data is tabulated and can be found in Appendix G. 
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Figure 5.40 Spherical SMSF tensile test at the (left) initial, (right) final states.
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 The plot can be divided into four main different zones in terms of behavior; those 

behaviors correspond to the prototype’s intermediate actuation. Figure 5.42 illustrates those 

actuations at different zones, the arrow points to the part of the mechanism that has been actuated 

to its second stable position where the circled section points to the ones in the first stable position 

and yet to be actuated. The followings are the description of each zone in reference to the 

Figure 5.42  and Figure 5.27: 

Zone 1: As the experiment begins, the tension applied is translated into radial forces that increase 

gradually storing strain energy within the compliant mechanism. Due to the mechanism’s 

bistability feature and after it reaches the unstable equilibrium position, the energy stored will be 

released in the form of negative force applied within the mechanism causing the sudden drop. 

This corresponds to P2S3 mechanism being actuated to its second stable position in all sectors. 

Zone 2: Corresponds to P2S2 mechanisms being actuated to their second stable. The force 

required for those mechanisms is less due to some energy stored within them during the loading 

accorded in zone 1. 

Zone 3: Corresponds to P2S1 mechanisms being actuated to their second stable.  

Zone 4: Corresponds to P1 mechanisms being actuated to their second stable. 

 

 After morphing the SMSF prototype to its second stable position as a sphere, the 

increasing load beyond zone 4 is converted to strain energy stored within the compliant 

mechanisms in which the tests were stopped at that point not to damage the SMSF prototype. 

Because the tests were done using displacement loading, it can be observed that the reaction 

forces throughout the curves are inversely proportional to the displacement rate. At low 

displacement rate, the potential energy gradually builds up within the compliant links showing 

more identifying features on its the curve than that of higher displacement rate result curve.  
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Figure 5.41 Force-displacement curves and zones identification. 
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Figure 5.42 Spherical SMSF actuations at different zones. 

 

 The following chapter will describe the kinematic analysis involved in transforming 

regular mechanisms into bistable mechanisms using compliant segments. To aid this 

transformation, Solidworks will be used to graphically represent the relation between links’ 

rotation and coupler curves at a point on the m mechanism. The methods followed are effective 

only if the initial and final states of the mechanism are given.  
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CHAPTER 6: DESIGN OF MECHANISM STABILITY USING OVER-CONSTRAINT 

 

 An extensive analysis, identifying bistability behavior in four-bar compliant mechanisms, 

was done by Howell [28]. His studies resulted in calculating the required torsional stiffness in 

each joint and the modification of the links’ geometry to achieve the bistability behavior. The 

toggle positions are also set by the configuration of the mechanism links i.e. elbow up or down; 

the only way to have a specific intermediate stable position along the movement of the linkages 

is by designing a hard-stop. Another different approach to achieve this behavior was done in [30] 

by utilizing translational joints and springs in the studied models. All those approaches require 

extensive formulation by solving the kinematic and energy equations for each specific design. 

With advanced software solutions like Solidworks, simulating the kinematics can be used to 

design bistable behavior in a compliant mechanism with four-bar PRBM.  

 The following section presents the steps involved using Solidworks to synthesize a 

mechanism’s geometry in order to achieve a design’s specific bistability requirement. This 

method will ensure a stable position without the need of a hard-stop as in [28]. There are two 

main initial design considerations that need to be met before considering this analysis. First, both 

(first and second) state of the mechanism should be chosen and should represent the 

mechanism’s desired stable positions. The first state is the position that the mechanism was 

manufactured or assembled at, whereas the second state is the position at which the mechanism 

is toggled to. The second consideration is the assumption that the magnitude of the joints’ 

torsional spring stiffness is small i.e. living hinges [1].  
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6.1 Bistability In a Four-bar Compliant Mechanism Using Solidworks 

 This section introduces a novel use of the Solidworks software following a step-by-step 

procedure to construct a four-bar compliant mechanism with any two desired stable positions. 

The bistability is found by utilizing the perpendicular bisector from Burmester’s theory [31, 32] 

along with the coupler curve concept in a graphical representation. Those steps can be applied to 

any two positions of four-bar mechanism to find a solution to its bistability; further design 

constraints might be implemented to ensure the ability to fabricate the mechanism. The extra 

possible design constraints are discussed at the end of the procedure to fine-tune the final 

mechanism’s solution. 

 The main idea is to be able to attach a Potential Energy Element (PEE), such as a spring 

or a compliant link to the mechanism, thus generating the energy curve shown in Figure 2.3upon 

actuation. This new element has two points of attachment; one of those points needs to be 

attached on the mechanism itself whereas the other point could be attached to the ground link or, 

in special cases, to the mechanism itself. The design steps are shown with an illustrative 

example, which was chosen arbitrarily, to support the generality of this method. The design 

produced is split into two stages; the first stage describes the construction of the kinematic layout 

of the bistable mechanism, whereas the second stage examines the change in potential energy 

between the two equilibrium positions. 

6.1.1 Design Stage One: Kinematic Analysis Using Solidworks 

 At this stage of the design, the kinematic requirements to achieve the bistability behavior 

in the mechanism are established using Solidworks rather than the traditional methods by solving 

for the kinematic coefficient through a system of equations analysis. This use of Solidworks 

reduces the computational time needed and gives the designer more visual understanding of the 
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problem as well as the ability to verify the mechanism’s behavior real time. For comparison, if 

the four-bar linkages shown in Figure 6.1 were to be analyzed for bistability using the method in 

[28], the second stable position will be predefined by the mechanism itself, as shown depending 

on the location of the torsional spring (K). 

 

Figure 6.1 The second stable position depends on spring location and first position. 

 

 The previous figure is an example where the unique second stable position for the given 

four-bar depends on the mechanism’s first position and the spring location. Below are the steps 

to follow to specify an intermediate stable position without the use of hard-stop: 

Step 1: Identify the two desired stable states of the mechanism and sketch the links as lines 

connecting pin joints in both states, as shown in Figure 6.2 (b). The lengths of the links do not 

change between its initial and final position, in Solidworks this is implemented with equality 

constraints. The links are numbered clockwise with the ground being link (l4).  

 

Figure 6.2 The mechanism’s two stable position as design input. 
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The center points (fixed ground pivots) of the mechanism are identified as (n1) and (n4) where 

the circle points (moving pivots) are (n2) and (n3); this leads to (l2) being the targeted link for the 

analysis. 

Step 2: Construct the perpendicular bisectors of lines (n2 and n’2) and (n3 and n’3) segments. The 

intersection of these perpendicular bisectors is pole point (P), as shown in Figure 6.3. 

 

Figure 6.3 The mechanism’s pole point for (l2). 

 

 The second link need not necessarily be a straight link connecting between joints (n2) and 

(n3); it could be in any geometrical shape as long as it is rigid and it contains points (n2 and n3). 

Therefore, a point on the second link, which connects to one end of the potential energy element, 

needs to be selected.  

Step 3: To give an extra degree-of-freedom for the potential energy element (PEE) placement 

point, a ternary link representation of (l2) is sketched out, as shown in Figure 6.4. The lines (l21) 

and (l22) do not change length and so │ l21│=│ l’21│and │ l22│=│ l’22│. The points (mQ) and 
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(m’Q) are on the mechanism itself and represent the one attachment point of the PEE at its initial 

and final state, respectively.  

 

Figure 6.4 Ternary link representation of the coupler link to place the point (mQ). 

 

Step 4: As shown in Figure 6.5, two individual lines (lQ) and (l’Q) from the points (mQ) and (m’Q) 

are drawn to a point (Q); those lines represent the PEE at its initial and final state, respectively. 

Considering those two lines as a source for potential energy requires them to be un-deformed at 

both states (initial and final), thus an equality constraint is added to them. Both lines are attached 

to a single point (Q) that represents the second attachment point for the PEE. Additional 

constraints on the location of this point are described at later design stage. 

 Knowing that the point (P) represents the finite rotation pole of the second link between 

initial and final states, every point on that link would have the same pole while the mechanism 

moves between the predefined initial and final position. Thus;  

Step 5: Construct the perpendicular bisector line between the points (mQ) and (m’Q) where it 

must pass through point (P), and every point on that line is a possible location for point (Q) 

generated in step 2, as shown in Figure 6.6. 
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Figure 6.5 Shows the PEE representation as (lQ) with the point (Q). 

 

 

Figure 6.6 The perpendicular bisector of point (mQ) connected to the pole point (P). 
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6.1.2 Design Stage Two: Potential Energy Analysis Using Solidworks 

 After establishing the mechanism’s kinematics, this stage will analyze potential energy 

aspect to the design in order to achieve bistability through the PEE. Referencing Figure 6.6, the 

extra constraint imposed on the mechanism is adding the PEE, with points (Q) and (mQ) being its 

center point and circle point respectively. The effect of that is the point (mQ) has two 

incompatible zero-stress paths while the mechanism is in motion. The first path is defined by the 

coupler curve generated from the mechanism’s original center points (n1) and (n2), while the 

second path is a circular arc centered at (Q). The actual path the point (mQ) follows is a stressed 

path which depends on the relative flexibility (or stiffness) of the four-bar versus the PEE. 

 Using Solidworks, the following sequence of steps identify the two paths, providing an 

in-depth analysis of the PEE. For steps 6 and 7, either step can be followed first before the other, 

those two steps are about defining the location of the two points (Q) and (mQ). This is an under-

specify problem and leaves room to add constraints specific to the mechanism’s application such 

as the force required to toggle the mechanism and the stiffness of the links required by design.  

Step 6: The placement of the attachment point (Q) should be decided; different designs require 

different locations depending on the space limitation of the mechanism. The only condition is 

that point (Q) cannot be placed on a moving link; consequently, it can be only placed on the 

ground link. Moreover, fixing the point (Q) first partially restrict the location of the point (mQ) 

by only allowing it to move at an equal distance apart; meaning only the angle between the lines 

(lQ) and (l’Q) will vary but the lines have to remains equal in length. For the purpose of 

illustration, the center point (Q) is placed above the mechanism, as shown in Figure 6.6. Its 

position can be fine-tuned in a later stage of the design to satisfy the stress limits of the PEE. 
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Step 7: Next, the location of the point (mQ) is selected by the second link’s geometrical design 

and limitation. In the case of this step precedes step 6, the fixing of point (mQ) defines the pole 

line between points (P) and (Q) which consequently makes point (Q) only valid across that line. 

Because this section presents a general step-by-step design procedure, let the location of this 

point be selected as shown in Figure 6.6; the exact location can be considered as design input for 

a specific application. The proceeding steps remain the same regardless of the position chosen. 

Step 8: The first zero-stress path for point (mQ) is found using the coupler curve generated from 

the mechanism’s original center points. Using the motion analysis within Solidworks, the path of 

point (mQ) is traced throughout the rotational cycle of the mechanism. Figure 6.7 (a) and (b) 

shows the traced path in links display as well as in line representation, respectively. 

   

Figure 6.7 The first zero-stress path of the point (mQ) following the coupler curve. 
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Step 9: Finding the second path that point (mQ) follows by being a circle point for the center 

point (Q). This path is a circular arc connecting both the points’ two stable positions with a 

radius of (lQ) and its center being point (Q), as shown in Figure 6.8. 

Step 10: Super imposing both paths of the point (mQ) reveals the type of deformation that the 

PEE experiences. In this example, and assuming the four-bar mechanism’s links (l1 – l4) are 

rigid, the link (lQ) should be compressed to be able to toggle between both stable positions, as 

shown in Figure 6.9. 

 

Figure 6.8 The second path of the point (mQ) as an arc. 

 

 Knowing that a stable equilibrium point is a minimum potential energy and an unstable 

equilibrium point is a maximum potential energy is the key idea behind that bistability of such 

mechanism. The points of intersection between the two curves (first and second) are going to be 

a minimum potential energy, the link (lQ) is not being compressed or stretched when the two 

curves intersects. Everywhere else, the difference between these two curves results in tension or 
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compression and the unstable equilibrium point occurs when the difference between the two 

curves become the maximum. The whole reason this idea works is because the path generated by 

the point (Q) and the path generated by the coupler curves are different. 

 

Figure 6.9 The PEE in a compressed deformation. 

 

 This concludes the general step-by-step design procedures to establish a bistability 

behavior in a four-bar mechanism with any two desired positions. The analysis of the two paths 

is specific to each design; from the example used, the PEE will experience a compressive load to 

follow the coupler curve path. The same example can be re-designed if a tensional load on the 

PEE is required; the position of the point (Q) can act as a knob to control the magnitude and 

direction of deflection on the element. Figure 6.10 shows if the center point (Q) was placed at the 

opposite side from what is in Figure 6.6; the coupler curve remains the same because the 

mechanism did not change but the path of the circle point (mQ) changes. The result is that the 

PEE experiences elongation along the path between the two stable positions. 
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Figure 6.10 The PEE in an elongated deformation. 

 

 The specific analysis of the PEE and the two paths will be discussed further for a specific 

problem in this research. The general approach to the problem will be the same for any 

mechanism but differ in the actual data. 

6.2 Bistability by Over-Constraint 

 The idea behind bistability by over-constraining the mechanism is introducing a 

compliant link that represents the PEE in the previous section. Because this research is targeting 

one degree-of-freedom mechanisms, adding an extra link with two joints would result in zero 

degree-of-freedom transforming the mechanism into a structure. At each stable position the 

mechanism will remain a structure; however, while it is in actuation, the flexibility of the 

compliant link permits the mechanism to toggle between its stable positions.  

 In this section, a detailed analysis is presented in converting the unit-cell element in P1 

SMSF, from Chapter 5, into bistable element using the step-by-step design procedure. Followed 

by a demonstration in how to transform parallel four-bar linkages, which a special case of 

linkages, into a mechanism with two stable positions using the over-constraint by compliant link.  
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6.2.1 SMSF: Unit-Cell Bistability Synthesis 

 The unit-cell element used in Chapter 5 for P1 design was based on an eight bar 

mechanism with one degree-of-freedom; because one of the design’s requirements is bistability, 

the unit-cell should behave like a structure at each stable position. Further observation on that 

selected design, shown in Figure 5.15, reveals that the mechanism can be split into two four-bar 

mechanisms attached at the center, as shown in Figure 6.11.  

 

Figure 6.11 P1’s mechanism splits into two four-bar mechanism. 

 

 For the left half of the mechanism, the angle between links (l1) and (l52) remains constant 

at 60 degrees from the design constraints in Table 5.3. Thus, the bistability of the left part can be 

achieved by following the methods proposed by Howell in [28], by increasing the magnitude of 

the torsional spring constant at the joint between the two links. This was done be connecting a 

rigid link between links (l1) and (l5); essentially eliminating the joint between them. This reduces 

the mechanism into three links and three joints, converting to a structure with zero degree-of-

freedom. As a result, the mechanism, shown in Figure 6.12, will toggle between the two stable 

positions by bucking link (l3) due to being thinner than (l4); making it sufficiently flexible to 

toggle.  
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Figure 6.12 The prototype of P1’s left half at both stable positions. 

 

 In the right half of the mechanism, the angle between links (l8) and (l2) increases when 

the mechanism is in actuation to produce the final trapezoidal shape. Consequently, the joint 

between both links needs to be small and act as a living hinge with very low stiffness, 

eliminating the possibility to use the method utilized in the left half. The alternative solution is 

introducing a compliant link (PEE) following the method proposed in section 6.1; adding a link 

and two joints normally turns the mechanism into a structure with zero degrees-of-freedom. 

Specifically, the compliance of the PEE permits the toggling of the mechanism, thus the 

placement of the compliant link is important. 

 The steps in Section 6.1 were used to design a solution that satisfies the following 

specific design constraints: 

1- The mechanism should be contained within a specified area without interference; 

2- The ability to laser cut the design from a thin sheet of polymer; 

3- The stresses on the compliant link or PEE should be within the material’s limits; and 

4- The PEE’s ability to generate enough potential energy to overcome the (small but non-

zero) restoring torques within the mechanism’s living hinge joints while moving from 

first to second position and back. 
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For steps 1 and 2: From the analysis of P1 in Section 5.3.1, the initial and final state of the 

mechanism is known with its dimensions. Figure 6.13 shows both states with the perpendicular 

bisectors drawn for the end points of (l62) to identify its pole point (P). 

For steps 3 to 7: Given the geometrical constraint of the mechanism, the attachment point (mQ) of 

the compliant link (PEE) has to be on link (l62). The lines (lQ) and (l’Q) are sketched out 

representing the PEE at its initial and final state respectively, along with its perpendicular 

bisector connecting its point (Q) to the pole point (P). Point (Q) is attached to link (l2) to satisfy 

the constraint of the mechanism being contained within the specified area, as shown in 

Figure 6.14. 

 Given the fact that both attachment points (mQ) and (Q) are on the mechanism’s link (l62) 

and (l2) respectively limits their position in order to satisfy the non-interference within the 

mechanism. The restriction is caused by the PEE at its second stable position represented in link 

(l’Q); both of its end points (m’Q) and (Q) can only slide over the links (l’62) and (l2), 

respectively. Assuming point (Q) is the control, its position is limited to the distance between the 

joint (n1) up to where the links (l’2) and (l’62) are parallel and collinear, as shown in Figure 6.15.  

 

Figure 6.13 P1’s right half at both state with the pole point (P) identified. 
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Figure 6.14 The PEE placement with its point (Q) placed on the ground link (l2). 

 

 

Figure 6.15 The limits of points (mQ), (m’Q) and (Q) on the mechanism. 

 

For step 8:  Knowing that the positions of the point (mQ) along the limits within (l62), shown in 

Figure 6.15 are infinite in theory, eight different coupler curves generated using Solidworks at 

different intervals across the link (l62) to visualize the change in the curves’ behavior, as shown 

in Figure 6.16. All of those curves and any intermediate ones represent different solutions to the 

bistability behavior and are considered to be the first path that point (mQ) traces. 
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Figure 6.16 Eight different coupler curves generated for (mQ) within its limits. 

 

For steps 9 and 10: Four coupler curves of point (mQ) are selected and superimposed on the 

second arc path associated with the position of the (mQ) being the circle point to the center point 

(Q). Each coupler curve is considered a configuration and named (A, B, C and D) for later 

reference, as shown in Figure 6.16. 

 The selection process for the solution was done upon visual observation of each 

configuration, the satisfaction of the design constraints and the ability to produce the prototype 

as follows: 

 Configuration A: It was disqualified due to the maximum distance between the two paths 

measured to be 0.8 mm compared to the PEE’s length of 19.5 mm, which may not 

provide enough potential energy to overcome the shiftiness within the mechanism. 

Furthermore, the trace of point (mQ) has to pass the second stable position to follow the 

coupler curve which might introduce unwanted intermediate position, as shown in 

Figure 6.17 (a); 

 Configuration B: It was also disqualified due to the same reason as configuration A from 

the trace point of view, as shown in Figure 6.17 (b);  
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 Configuration C: It qualifies to be a solution due to there being enough paths suppuration 

and the absence of intermediate position caused by the associated coupler curve; the PEE 

would experience elongation to follow the coupler curve as shown in Figure 6.17 (c); and 

 Configuration D: It was disqualified due to the large angle difference that the PEE 

undergoes between the initial and final state (about 107 degrees), which might cause high 

stress at the joints. Furthermore, the close proximity between the PEE and link (l62) as the 

final state might cause issues in designing the PEE when thickness is added, as shown in 

Figure 6.17 (d). 

 

Figure 6.17 The superimposed two paths of (mQ) for the selected coupler curves. 

 

 For a proof of concept in the SMSF design, the configuration C was selected to be the 

design choice without claiming it is the only solution to the mechanism’s bistability. Locating 

the optimum position of the point (mQ) may require optimization analysis of the mechanism, 
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which may be considered in future work. Figure 6.18 shows the right half of the mechanism’s 

prototype, from section 5.3.1, with the compliant link added for bistability; the detailed 

dimensions of the PEE can be found in Appendix E.3. Adding the PEE elements equals to adding 

a link and two joints to the four-bar mechanism for a total of five links and six joints converting 

it to a structure with zero degree-of-freedom. As a result, the mechanism will toggle between two 

stable positions by elongating the PEE, allowing for one degree-of-freedom while actuation.  

 

Figure 6.18 The prototype of P1 right half at both stable positions. 

 

Looking at the final P1 mechanism, the left half combined two links as one eliminating one link 

and one joint where the right half added one link and two joints as shown in Figure 6.19 (b). The 

total mobility is (-1) using eight links and eleven joint; this over-constrained mechanism behaves 

as a structure in both stable positions with enough flexibility within its compliant links to toggle 

between them. 

 

Figure 6.19 P1 mechanism, (a) With mobility of one, (b) with mobility of (-1). 

 

This conclude our first design example of using the over-constraint technique in the SMSF 

models, the following sub-section will introduce the second design example for this chapter. 
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6.2.2 Parallel Four-bar Compliant Mechanism Bistability 

 The parallelogram linkage is one of the classical four-bar mechanisms with one degree-

of-freedom. It is considered to be a change point mechanism and, according to the work done in 

[28]; it can achieve bistability by placing the torsional spring at any joint location. The second 

stable position considered being predefined according to the mechanism’s initial state and 

dimensions; any alternative second stable position can occur by a designed hard-stop. As an 

example, Figure 6.20 (a) and (b) shows the two stable positions in which the mechanism can 

toggle between by placing the spring (K) at the bottom left and right joints respectively taking 

the bottom link as the ground. The method proposed in this chapter allows the mechanism to 

have a second stable position by design via over-constraining it using compliant link as PEE. 

This sub-section illustrates with design example using the step-by-step procedure to convert a 

parallelogram linkage into a mechanism with two bistable positions as shown in Figure 6.20 (c), 

along with a produced working prototype for behavior demonstration. 

 

Figure 6.20 A parallelogram linkage at different toggled positions. 
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 Considering the same P1 SMSF’s design constraint, Figure 6.21 illustrates the entire step-

by-step procedure. The perpendicular bisectors of the link (l2) at both ends are parallel unlike 

other mechanisms, where the intersection of the bisectors represents the pole point (P). For this 

reason, the pole of (l2) is considered to be any line between both bisectors that is parallel to them. 

The two attachment points of the PEE (Q) and (mQ) are placed on the pole line and link (l2), 

respectively. The dimension (dP) represents the distance of the pole line from the left bisector 

and (dQ) controls the distance of point (Q) from (l4) along the pole line in either direction. The 

first path of the point (mQ) is along the coupler curve that is an arc in which its center is the 

intersection point between the link (l4) and the pole line. The second path is also an arc with 

point (Q) as its center; depending on the location of (Q) being above or below the ground link 

(l4) translates to what type of loading the PEE experiences (either compression or tension, 

respectively). Assuming the mechanism’s links are rigid and with low torsional stiffness at the 

joints, Figure 6.21 (a) shows when the PEE experiences compression by being forced to follow 

the first path when absent the PEE, it would follow the second path instead. Furthermore, 

Figure 6.21 (b) shows the tension loading on the PEE when point (Q) is below (l4). 

 

Figure 6.21 The mechanism where the PEE experiences (a) tension, (b) compression. 
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Figure 6.21 (Continued) 

 

 For prototype demonstration, the mechanism shown in Figure 6.21 (a) is considered 

where the PEE or (lQ) undergo compressive loading. The mechanism was laser cut as a single 

piece from a Polypropylene Copolymer sheet, shown in Figure 6.22, and the detailed dimensions 

of the mechanism can be found in Appendix E.4. Because this research focuses on the 

mechanism’s kinematics, therefore the joints and the PEE are cut as small as the laser cutter 

reliably can without detailed stress or fatigue analysis.  

 

Figure 6.22 The final designed mechanism (Left) Solidworks, (Right) Prototype. 
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This mechanism was designed to toggle between two stable positions; the first stable position is 

when the angle between the two links (l4) and (l1) is at 120 degrees counter-clockwise and the 

second stable position at 30 degrees counter-clockwise for the same links. Figure 6.23 shows two 

identical prototypes placed on top of each other at the two stable positions without any external 

constraints to hold them at their perspective position. 

 

Figure 6.23 Identical prototypes showing the two stable positions. 

 

Figure 6.24 shows the individual stable positions on a polar grid to illustrate their perspective 

angles as well as the intermediate unstable position showing the bucking of the PEE due to the 

difference in the two paths that point (mQ) traces, as shown in Figure 6.21 (a). 

 

Figure 6.24 The prototype at its (a) initial, (b) intermediate and (c) final state. 
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Figure 6.24 (Continued) 

 

 The FEA analysis preformed on the model shows high stress concentration at the joints 

exceeding the yield point of the material, which corresponds to the material deformation 

observed on the actual prototype. Figure 6.25 shows the stresses in the PEE when buckling at the 

mechanism unstable position, whereas Figure 6.26 shows the stress concentration at the joints 
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when the mechanism at the second stable position. Optimizing the stress-strain behavior at the 

joint and on the PEE element may be considered in future work on this topic. 

 

Figure 6.25 FEA analysis of the mechanism at the unstable position.  

 

 

Figure 6.26 FEA analysis of the mechanism at the second stable position. 
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CHAPTER 7: CONCLUSION, RECOMMENDATIONS AND FUTURE WORK 

 

7.1 Conclusion 

 The novel contributions in this Dissertation included: 

1- The ability to design specific element for a specific length change by introducing the 

Linear Bi-stable Compliant Crank-Slider-Mechanism (LBCCSM). The model’s theories 

were discussed along with introducing two different design approaches:  

a- The first approach considers the maximum vertical deflection of the model.  

b- The second approach considers the maximum force applied to the model.  

These approaches are simplified using step-by-step design guidelines and flow charts 

identifying the equations and plots to use. An example for each approach also provided to 

simulate the walk through. Moreover, a novel use of the Linear Bi-stable Compliant 

Crank-Slider-Mechanism (LBCCSM) was also introduced by using the elements to do 

morphing space-frame.  

c- The modeling methods and strategies were discussed along with introducing a 

new concept of (
 
 
) to guide the selection process of the LBCCSM placement 

within the sub-grid square that forms the single-layer grid. Two examples: 

d- The cylindrical to hyperbolic shell SMSF, and  

e- The cylindrical to spherical shell SMSF  

were modeled geometrically and prototyped for result comparison and proving of 

concept. 
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2- Different variation of morphing space-frame using unit-cell bistable elements were also 

introduced with the methodology in mechanism synthesis involved. The example of 

morphing a disk like structure into a hemisphere was modeled and prototyped as a proof 

of concept for that topic.  

3- The ability to transform a given one degree-of-freedom mechanism and turn it into 

bistable is also considered a novel contribution to this work. This new approach to design 

bistable mechanisms in general using the Computer-aided design (CAD) software 

reduces the complexity of the problem along with providing visual aspect of behaviors. 

7.2 Recommendations and Future Work 

 This research lays the foundation for future work on shape morphing structures using 

compliant mechanism elements. The introduced methods allow the morphing of simple 

geometric forms; there are enormous amount of future work to customize this to specific 

problems and devices that are of practical importance and adapting the work to more 

complicated geometric forms.  

 The recommended future work on the LBCCSM, in Chapter 3, will be aimed at 

improving and enhance the design model to accommodate the stress concentration areas along 

with the design of the living hinges and incorporating the work done by Howell [27]. 

Additionally, more extensive comparisons should be considered between the presented 

mathematical model, the FEA and the actual prototype. For the hyperbolic and spherical SMSF, 

in Chapter 4, improving the design of the H-shaped living hinge will provide more accurate 

comparison between the Matlab algorithm and the actual prototype. There are different varieties 

of discipline that could be involved in the morphing strategy for better understanding such as 

topology optimization, origami theory, and design optimization. Instead of the single-layer grid, 



www.manaraa.com

 

134 

double-layer grid designs are also possible to introduce a thickness to the space-frame. Also, for 

morphing of complicated and non-axisymmetric surfaces; stress trajectories can be utilized in 

placing the bistable elements to be actuated by the applied loads. The shape-shifting-surfaces 

(SSSs) [9] can be modified and used as added attachments to the space-frame to give it its 

surface profile, or coating the SMSFs with water proof layer using origami based skins. 

Incorporating intermediate surfaces in the hemisphere and sphere SMSF structure, in Chapter 5, 

could provide extra structural support. Additionally, more refined flexural pivots design in terms 

of stress concentration, fatigue and durability analysis would provide better LBCCSM and SMSF 

models. Finally, further investigation on the new methodology, in Chapter 6, by optimizing the 

stress-strain behavior at the joint and on the PEE element for making mechanisms bistable could 

be more important for some applications such as bistable switches, sensitive sensors, vibration 

isolators or energy absorbers. 
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APPENDIX A: NOMENCLATURE 

 

L1, L2 Length of segment 1 and segment 2, respectively [mm]. 

θ1 Angle at which segment 1 lies (CW) [deg]. 

θ2i Initial angle at which segment 2 lies (CCW) [deg]. 

θ2 Changing angle of segment 2 (CCW) [deg]. 

Θ1 The PRBM angle of segment 1 [deg]. 

Θ2 The PRBM angle of segment 2 [deg]. 

γ  Characteristic radius (Fixed-Pinned) = 0.85 [1]. 

ρ  Characteristic radius (Pinned-Pinned) = 0.85 [1]. 

KΘ  Stiffness coefficient = 2.65 [1]. 

ω1 = Θ1 + θ1 

ω2 = Θ1 + Θ2 + θ1 + θ2 

ω3 = Θ1 + θ1 + θ2 

ω4 = Θ1 – Θ2 + θ1 + θ2 

K1 Characteristic pivot stiffness of segment 1 [N.mm]. 

K2 Characteristic pivot stiffness of segment 2 [N.mm]. 
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X,x Changing distance between point A and point C [mm]. 

Δ Output displacement from point C to point C``. 

F, M Applied force [N] and moment [N.m] respectively. 

V Total spring energy of the characteristic pivots. 

E Young’s modulus [N/ mm
2
]. 

σy The yield stress [MPa]. 

SF The safety factor. 

m Initial angles ratio. 

v Stiffness coefficient ratio. 

f Non-dimensional force. 

I1 2
nd

 moment of area of segment 1 [mm
4
]. 

I2 2
nd

 moment of area of segment 2 [mm
4
]. 

t Material thickness [mm]. 

w1 First segment’s width [mm]. 

w2 Second segment’s width [mm]. 

Ft Tangential force at the tip of segment 1 [N]. 

FB The buckling force of segment 2 [N]. 

Fp The passive force from the FB component [N]. 

J Non-dimensional force-flexibility coefficient. 
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s Number of the polygon sides. 

k Number of the total slices forming a cylindrical shape. 

n Number of the bi-stable elements LBCCSM. 

ho Space-frame’s initial height before morphing [mm].  

hf Space-frame’s morphed height [mm]. 

h Space-frame’s heights at each slice [mm].  

ρo Space-frame’s initial circumscribed radius [mm]. 

ρf Space-frame’s morphed circumscribed radius [mm]. 

μ Space-frame radius across the height [mm]. 

Δμ SMSF change in radius [mm]. 

ls Length of each polygon’s side [mm]. 

Δτ Relative rotation between two parallel planes [deg]. 
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APPENDIX B: MATHCAD CODE 
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APPENDIX C: MATLAB CODES 

 

C.1 Solving for the Buckling of Segment 2 

function PRBSM08b 

  

clc 

clear all 

format shortG 

  

%------------------ 

%  Input Parameters   

%------------------  

  

Theta_1_start = 20; %in Degrees! 

Theta_1_stp = 10; %in Degrees! 

Theta_1_end = 80; %in Degrees! 

  

Theta_2i_stp = 1; %in Degrees! 

Theta_2i_end = 85; %in Degrees! 

  

% x0=[ oX ; oCap_Theta_1 ; oCap_Theta_2 ; oDf]; 

  

count=0; 

for ii= [1 2 3 4 5 6 8 10 12 14 16 18 20 25 30 40 50 70 100] 

%v_start:v_stp:v_end; 

    for jj=Theta_1_start:Theta_1_stp:Theta_1_end; 

        for kk=jj:Theta_2i_stp:Theta_2i_end; 

            count=count+1; 

        end 

    end 

end 

  

Sol_mat=[]; 

bx_mat=[]; 

bx_max_mat=[]; 

b_over_x_maxL=0; 

  

counter=count; 

for Theta_1 = deg2rad([ Theta_1_start : Theta_1_stp : 

Theta_1_end ]); 
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for v = [1 2 3 4 5 6 8 10 12 14 16 18 20 25 30 40 50 70 100 150 

200 250 500] %v_start : v_stp : v_end; 

     

    b_over_x_n=0; 

                         %Theta_2i_start 

for Theta_2i = deg2rad([ rad2deg(Theta_1) : Theta_2i_stp : 

Theta_2i_end]); 

  

    iter=[ counter rad2deg(Theta_1) v rad2deg(Theta_2i) ] 

    rad2deg(Theta_2i); 

    m = sin(Theta_1)/sin(Theta_2i); 

  

    L1 = 1; 

    L2 = L1*m; 

    gama = 0.85; 

  

    L11= (1-gama)*L1; 

    L12= gama*L1; 

  

    L21= gama*L2/2; 

    L22= (1-gama)*L2; 

    L23= gama*L2/2; 

  

    oX = L1*cos(Theta_1)+L2*cos(Theta_2i);    %z(1) 

    oCap_Theta_1 = deg2rad(1e-3);            %z(2) 

    oCap_Theta_2 = deg2rad(1e-3);            %z(3) 

    oDf = 1e-3 ;                             %z(4) 

  

    % x2=[ oX ; oCap_Theta_1 ; oCap_Theta_2 ; oDf]; %new one in 

line 76 

  

    Sol_mat_s=[]; 

    bx_mat_s=[]; 

    X_max = oX; 

     

%--------------------------------- 

%  Solving at what angle L2 Buckls     

%---------------------------------  

  

    x0= [ deg2rad(44) ; deg2rad(44) ]; %that is initial guess of 

Cap_Theta_1, Theta_2 resp. 

  

    opts0=optimset('MaxFunEvals',5e6, 'MaxIter',5e6, 

'TolFun',1e-6); 

     

    [z0,fval0] = fsolve(@Equ0 ,x0 ,opts0); 
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    Cap_Theta_1 = abs(rad2deg(z0(1))); 

    Theta_2 = abs(rad2deg(z0(2))); 

    %Theta_2_end = Theta_2_start + 0; 

    fval0; 

   

    b = gama*L1*sin(Theta_1+deg2rad(Cap_Theta_1))+(1-

gama)*L1*sin(Theta_1); 

     

    Sol_mat=[Sol_mat; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),Theta_2,oX,Cap_Theta_1,oCap

_Theta_2,oDf]; 

    Sol_mat_s=[Sol_mat_s; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),Theta_2,oX,Cap_Theta_1,oCap

_Theta_2,oDf]; 

     

    bx_mat=[bx_mat; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),Theta_2,b,oX]; 

    bx_mat_s=[bx_mat_s; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),Theta_2,b,oX]; 

    b_max=max(bx_mat_s(:,5)); 

     

    b_over_x= ceil((b_max/X_max)*1000)/1000; 

     

    b_over_x_maxL= 

floor((m/(cos(Theta_1)+cos(Theta_2i)*m))*1000)/1000; 

        

      if b_over_x >= b_over_x_maxL ;, break, end 

      if b_over_x_n > b_over_x ;, break, end 

      %if abs(b_over_x - b_over_x_maxL) < 1e-4;, break, end 

      %if b_over_x == b_over_x_maxL;, break, end 

        

      b_over_x_n = b_over_x; 

  

save('PRBSM08b') 

  

% fprintf('            v         Theta_1      Theta_2i     

Theta_2       X      Cap_Theta_1     Cap_Theta_2     Df') 

Sol_mat_s; 

% fprintf('            v         Theta_1      Theta_2i     

Theta_2       b       X') 

bx_mat_s; 

b_max; 

X_max; 

  

bx_max_mat= [bx_max_mat; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),b_max,X_max,b_over_x]; 
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% Cap_Theta_1_max_mat= [Cap_Theta_1_max_mat; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),Cap_Theta_1]; 

     

counter=counter-1; 

end %for Theta_2i 

save('PRBSM08b') 

end %for v 

save('PRBSM08b') 

end %for Theta_1 

save('PRBSM08b') 

  

fprintf('         Theta_1         v         Theta_2i   Theta_2         

X      Cap_Theta_1  Cap_Theta_2       Df') 

Sol_mat 

fprintf('         Theta_1         v         Theta_2i   Theta_2        

b            X') 

bx_mat 

fprintf('         Theta_1         v         Theta_2i      b            

X           b/X') 

bx_max_mat 

fprintf('         Theta_1         v         Theta_2i   

Cap_Theta_1') 

Cap_Theta_1_max_mat 

  

%--------------------------------- 

%  Defining Equations 3.8 and 3.18 

%--------------------------------- 

  

function Fun0 = Equ0(z0) 

%     Fun0=[2.65*Cap_Theta_1-

(pi^2)*(1/(2*v*m))*sin(Theta_1+Cap_Theta_1+Theta_2); 

%     L11*sin(Theta_1)+L12*sin(Theta_1+Cap_Theta_1)-

L2*sin(Theta_2) 

%     ] 

  

Fun0=[ 

    2.65*z0(1)-(pi^2)*(1/(2*v*m))*sin(Theta_1+z0(1)+z0(2)); 

    L11*sin(Theta_1)+L12*sin(Theta_1+z0(1))-L2*sin(z0(2)) 

    ];   

end 

  

save('PRBSM08b') 

load('PRBSM08b') 

end 
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C.2 The LBCCSM Model  

function PRBSM09 

  

%------------------------------------------------------ 

%  NOTE: 

%  This part of the code takes long computational time, 

%  it is advised to solve for individual Theta_1 and 

%  then combine the data into one .mat file to be use 

%  in the plotting code. 

%------------------------------------------------------ 

  

clc 

clear all 

format shortG 

  

%------------------ 

%  Input Parameters 

%------------------ 

  

% v_start = 5; 

% v_stp = 2; 

% v_end = 5; 

  

Theta_1_start = 20 ; %in Degrees! 

Theta_1_stp = 10;    %in Degrees! 

Theta_1_end = 80;    %in Degrees! 

  

%Theta_2i_start = Theta_1_start 

%Theta_2i_start = #; %in Degrees! 

Theta_2i_stp = 1;    %in Degrees!  

Theta_2i_end = 85;   %in Degrees!  

  

%Theta_2_start = Theta_2i_start;  %and could be bigger than 

Theta_1_start! 

%Theta_2_start = #;  %in Degrees! 

Theta_2_stp = 0.05;  %in Degrees! 0.1  1 0.05  0.01(50 60) 

0.005(70) 0.005(80) 

Theta_2_end = 85;    %in Degrees! %180-Theta_2i_start;  

  

% x0=[ oX ; oCap_Theta_1 ; oCap_Theta_2 ; oDf]; 

% v less than 4 can be done using 1 -- 0.05 -- L=10 

  

count=0; 

for ii= [5 6 8 10 12 14 16 18 20 25 30 40 50 70 100] 

%v_start:v_stp:v_end; 

    for jj=Theta_1_start:Theta_1_stp:Theta_1_end; 
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        for kk=jj:Theta_2i_stp:Theta_2i_end; 

            for ll=kk:Theta_2_stp:Theta_2_end; 

                count=count+1; 

            end  

        end 

    end 

end 

  

  

Sol_mat=[]; 

%%bx_mat=[]; 

%%bx_max_mat=[]; 

Cap_Theta_1_max_mat=[]; 

%--Cap_Theta_1_Limit_mat=[]; 

  

counter=count; 

for Theta_1 = deg2rad([ round(Theta_1_start : Theta_1_stp : 

Theta_1_end) ]); 

  

for v = [5 6 8 10 12 14 16 18 20 25 30 40 50 70 100]; 

%round(v_start : v_stp : v_end); 

     

for Theta_2i = deg2rad([ (rad2deg(Theta_1) : Theta_2i_stp : 

Theta_2i_end)]); 

     

    %rad2deg(Theta_2i) 

    m = sin(Theta_1)/sin(Theta_2i); 

  

    L1 = 1;                         % Using unit element  

    L2 = L1*m; 

    gama = 0.85; 

  

    L11= (1-gama)*L1; 

    L12= gama*L1; 

  

    L21= gama*L2/2; 

    L22= (1-gama)*L2; 

    L23= gama*L2/2; 

  

    oX = L1*cos(Theta_1)+L2*cos(Theta_2i);   %z(1) 

    oCap_Theta_1 = deg2rad(11);              %z(2) 

    oCap_Theta_2 = deg2rad(1e-2);            %z(3) 

    oDf = 1e-3 ;                             %z(4) 

  

    x0=[ oX ; oCap_Theta_1 ; oCap_Theta_2 ; oDf]; 

  

Sol_mat_s=[]; 
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bx_mat_s=[]; 

Cap_Theta_1_mat_s=[]; 

Cap_Theta_1_Limit_mat_s=[]; 

  

  

Theta_2_start = rad2deg(Theta_2i); 

  

for Theta_2 = deg2rad([ Theta_2_start : Theta_2_stp : 

Theta_2_end ]); 

     

    iter= [counter 

rad2deg(Theta_1),v,rad2deg(Theta_2i),rad2deg(Theta_2)] 

    %rad2deg(Theta_2) 

    %options =optimset('fsolve'); 

    opts2=optimset('MaxFunEvals',5e6, 'MaxIter',5e6, 

'TolFun',5e-5); 

     

     

    [z2,fval2] = fsolve(@Equ2 ,x0 ,opts2); 

     

    X = z2(1); 

    Cap_Theta_1 = rad2deg(z2(2)); 

    Cap_Theta_2 = rad2deg(z2(3)); 

    Df = z2(4); 

    fval2; 

     

    if Cap_Theta_2 > 90 

        Cap_Theta_2 = oCap_Theta_2; 

    else 

        Cap_Theta_2; 

    end 

     

% % %     Cap_Theta_2=0; 

    x1=[ x0(1,1) ; x0(2,1) ; x0(4,1)]; 

     

        if  Cap_Theta_2 < 0.1 

            %rad2deg(Theta_2) 

            opts1=optimset('MaxFunEvals',5e6, 'MaxIter',5e6, 

'TolFun',5e-6); 

            %x1=[ x0(1,1) ; x0(2,1) ; x0(4,1)] 

            [z1,fval1] = fsolve(@Equ1 ,x1 ,opts1); 

             

            X = z1(1); 

            Cap_Theta_1 = rad2deg(z1(2)); 

            Cap_Theta_2 = 1e-7; 

            Df = z1(3); 

            fval1; 
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        end       

     

        opts1=optimset('MaxFunEvals',5e6, 'MaxIter',5e6, 

'TolFun',5e-6); 

        [z1L] = fsolve(@Equ1 ,x1 ,opts1); 

        Cap_Theta_1_Limit = rad2deg(z1L(2)); 

         

         

         

    x0=[ X ; abs(deg2rad(Cap_Theta_1)) ; 

abs(deg2rad(Cap_Theta_2)) ; Df]; 

  

% X2=roundn([x0(1,1);rad2deg(x0(2:3,1));x0(4,1)],-4); 

  

    if abs(X) < 0.0001 

        X = 0; 

    end 

    if abs(Cap_Theta_1) < 0.001 

        Cap_Theta_1 = 0; 

    end 

    if abs(Cap_Theta_2) < 0.00001 

        Cap_Theta_2 = 0; 

    end 

    if or(abs(Df) < 0.0001, abs(Df) > 1)  

        Df = 0; 

    end 

     

    %%b = gama*L1*sin(Theta_1+deg2rad(Cap_Theta_1))+(1-

gama)*L1*sin(Theta_1); 

     

    Sol_mat=[Sol_mat; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),rad2deg(Theta_2),X,Cap_Thet

a_1,Cap_Theta_2,Df]; 

    Sol_mat_s=[Sol_mat_s; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),rad2deg(Theta_2),X,Cap_Thet

a_1,Cap_Theta_2,Df]; 

     

    %%bx_mat=[bx_mat; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),rad2deg(Theta_2),b,X]; 

    %%bx_mat_s=[bx_mat_s; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),rad2deg(Theta_2),b,X]; 

    %%b_max=max(bx_mat_s(:,5)); 

    %%X_max=max(Sol_mat_s(:,5)); 

     

    %%b_over_x= b_max/X_max; 
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    Cap_Theta_1_mat_s=[Cap_Theta_1_mat_s; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),Theta_2,Cap_Theta_1]; 

    Cap_Theta_1_Limit_mat_s=[Cap_Theta_1_Limit_mat_s; 

rad2deg(Theta_1),rad2deg(Theta_2i),Theta_2,Cap_Theta_1_Limit]; 

     

%     if round(Cap_Theta_2) > 0 

%         Cap_Theta_1_max = Cap_Theta_1; 

%         Cap_Theta_1_max_mat=[ Cap_Theta_1_max_mat; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),Cap_Theta_1_max]; 

%         break 

%     end 

counter=counter-1; 

save('PRBSM09') 

end %for Theta_2 

save('PRBSM09') 

  

  

    Cap_Theta_1_max=max(Cap_Theta_1_mat_s(:,5)); 

    Cap_Theta_1_max_mat=[ Cap_Theta_1_max_mat; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),Cap_Theta_1_max]; 

     

    Cap_Theta_1_Limit_max=max(Cap_Theta_1_Limit_mat_s(:,4)); 

  

%Cap_Theta_1_Limit_mat=[Cap_Theta_1_Limit_mat; 

rad2deg(Theta_1),rad2deg(Theta_2i),Cap_Theta_1_Limit_max]; 

%bx_max_mat=[bx_max_mat; 

rad2deg(Theta_1),v,rad2deg(Theta_2i),b_max,X_max,b_over_x]; 

     

    if round(Cap_Theta_1_max*100)/100 >= 

round(Cap_Theta_1_Limit_max*100)/100;,break, end 

     

     

  

end %for Theta_2i 

save('PRBSM09') 

end %for Theta_1 

save('PRBSM09') 

end %for v 

save('PRBSM09') 

  

fprintf('         Theta_1         v         Theta_2i     Theta_2       

X      Cap_Theta_1     Cap_Theta_2     Df') 

Sol_mat 

%%fprintf('         Theta_1         v         Theta_2i     

Theta_2      b            X') 

%%bx_mat 
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%%fprintf('         Theta_1         v         Theta_2i     b            

X           b/X') 

%%bx_max_mat 

fprintf('         Theta_1         v        Theta_2i  

Cap_Theta_1_max') 

Cap_Theta_1_max_mat 

%--Cap_Theta_1_Limit_mat 

    

%--------------------------------------- 

%  Defining Equations 3.9, 3.10 and 3.19 

%--------------------------------------- 

  

function Fun1=Equ1(z1) 

%     Fun=[-

X+L11*cos(Theta_1)+L12*cos(Theta_1+Cap_Theta_1)+L2*cos(Theta_2); 

%     L11*sin(Theta_1)+L12*sin(Theta_1+Cap_Theta_1)-

L2*sin(Theta_2); 

%     Df+Cap_Theta_1*(-

1)*(L1*cos(Theta_2))/(L12*sin(Cap_Theta_1+Theta_1+Theta_2) 

%     ] 

  

Fun1=[-

z1(1)+L11*cos(Theta_1)+L12*cos(Theta_1+z1(2))+L2*cos(Theta_2); 

    L11*sin(Theta_1)+L12*sin(Theta_1+z1(2))-L2*sin(Theta_2); 

    z1(3)-

z1(2)*(L1*cos(Theta_2))/(L12*sin(z1(2)+Theta_1+Theta_2)) 

    ]; 

end 

  

%---------------------------------------------- 

%  Defining Equations 3.20, 3.21, 3.30 and 3.31 

%---------------------------------------------- 

  

function Fun2=Equ2(z2) 

% Fun=[-

X+L11*cos(Theta_1)+L12*cos(Theta_1+Cap_Theta_1)+L21*cos(Theta_2-

Cap_Theta_2)+L22*cos(Theta_2)+L23*cos(Theta_2+Cap_Theta_2); 

%     L11*sin(Theta_1)+L12*sin(Theta_1+Cap_Theta_1)-

L21*sin(Theta_2-Cap_Theta_2)-L22*sin(Theta_2)-

L23*sin(Theta_2+Cap_Theta_2); 

%     

Df+Cap_Theta_1*(L1*sin(Theta_2))/(L12*cos(Cap_Theta_1+Theta_1+Th

eta_2))+2*(L1/v)*Cap_Theta_2*(-

1)*(cos(Cap_Theta_1+Theta_1))/(2*L21*cos(Cap_Theta_1+Theta_1)*co

s(Theta_2)*sin(Cap_Theta_2)-

2*L21*sin(Cap_Theta_1+Theta_1)*sin(Theta_2)*sin(Cap_Theta_2)); 
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%     

Cap_Theta_1*(L22+2*L21*cos(Cap_Theta_2))/(L12*cos(Cap_Theta_1+Th

eta_1+Theta_2))+2*(1/v)*Cap_Theta_2*(L22*sin(Cap_Theta_1+Theta_1

+Theta_2)+L21*sin(Cap_Theta_1+Cap_Theta_2+Theta_1+Theta_2)+L21*s

in(Cap_Theta_1-

Cap_Theta_2+Theta_1+Theta_2))/(L21*(sin(Cap_Theta_1-

Cap_Theta_2+Theta_1+Theta_2)-

sin(Cap_Theta_1+Cap_Theta_2+Theta_1+Theta_2))) 

%     ] 

  

Fun2=[ 

    -

z2(1)+L11*cos(Theta_1)+L12*cos(Theta_1+z2(2))+L21*cos(Theta_2-

z2(3))+L22*cos(Theta_2)+L23*cos(Theta_2+z2(3)); 

    L11*sin(Theta_1)+L12*sin(Theta_1+z2(2))-L21*sin(Theta_2-

z2(3))-L22*sin(Theta_2)-L23*sin(Theta_2+z2(3)); 

    

z2(4)+z2(2)*(L1*sin(Theta_2))/(L12*cos(z2(2)+Theta_1+Theta_2))+2

*(L1/v)*z2(3)*(-

1)*(cos(z2(2)+Theta_1))/(2*L21*cos(z2(2)+Theta_1)*cos(Theta_2)*s

in(z2(3))-2*L21*sin(z2(2)+Theta_1)*sin(Theta_2)*sin(z2(3))); 

    

z2(2)*(L22+2*L21*cos(z2(3)))/(L12*cos(z2(2)+Theta_1+Theta_2))+2*

(1/v)*z2(3)*(L22*sin(z2(2)+Theta_1+Theta_2)+L21*sin(z2(2)+z2(3)+

Theta_1+Theta_2)+L21*sin(z2(2)-

z2(3)+Theta_1+Theta_2))/(L21*(sin(z2(2)-z2(3)+Theta_1+Theta_2)-

sin(z2(2)+z2(3)+Theta_1+Theta_2))) 

    ]; 

end 

  

  

save('PRBSM09') 

load('PRBSM09') 

end 
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C.3 Grouping the Solution by the θ1 

%------------------------------------------------------ 

%  NOTE: 

%  The LBCCSM Model code PRBSM09.m used to solve for  

%  the individual Theta_1. The resulting PRBSM09.mat  

%  files were combined into one single file called 

%  All_Sol_Mat.mat to be use in the plotting code. 

%------------------------------------------------------ 

  

clc 

clear all 

format shortG 

  

load('All_Sol_Mat.mat') 

  

% v_start = 5; 

% v_stp = 2; 

% v_end = 5; 

  

Theta_1_start = 20 ; %in Degrees! 

Theta_1_stp = 10; %in Degrees! 

Theta_1_end = 80; %in Degrees! 

  

%Theta_2i_start = Theta_1_start 

%Theta_2i_start = 50; %in Degrees! 

%Theta_2i_stp = 1; %in Degrees! 2.5  1 1.5  1(50 60) 1(70) 1(80) 

Theta_2i_end = 85; %in Degrees! 50  85 

  

%Theta_2_start = Theta_2i_start; %and could be bigger than 

Theta_1_start! 

%Theta_2_start = 20; %in Degrees! 

%Theta_2_stp = 0.01; %in Degrees! 0.1  1 0.05  0.01(50 60) 

0.005(70) 0.005(80) 

%Theta_2_end = 85; %180-Theta_2i_start;  

%Theta_2_end = 120; %in Degrees! 

  

  

Sol_mat=[]; 

Sol_max_mat=[]; 

  

  

L= size(Cap_Theta_1_max_limit_mat); 

row_start= 1; 

  

  

% % L_start = 0; 
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for Theta_1 = [20 30 40 50 60 70 80]; %round(Theta_1_start : 

Theta_1_stp : Theta_1_end); 

Theta_1; 

ms= 1; me= 0; 

ps= 1; pe=0; 

  

    if Theta_1 == 20;, Sol_mat= Sol_mat_20; 

        elseif Theta_1 == 30;, Sol_mat= Sol_mat_30; 

            elseif Theta_1 == 40;, Sol_mat= Sol_mat_40; 

                elseif Theta_1 == 50;, Sol_mat= Sol_mat_50; 

                    elseif Theta_1 == 60;, Sol_mat= Sol_mat_60; 

                        elseif Theta_1 == 70;, Sol_mat= 

Sol_mat_70; 

                            elseif Theta_1 == 80;, Sol_mat= 

Sol_mat_80;, end 

  

n= size(Sol_mat); 

                             

% % for LL = 1 : 1 : L(1,1); 

% %     if Cap_Theta_1_max_limit_mat(LL,1)== z_Theta_1; 

% %         L_start= LL; 

% %         break 

% %     end 

% % end 

% % L_end= LL + [(Theta_2i_end - z_Theta_1)]; 

     

     

for v = [2 3 4 5 6 8 10 12 14 16 18 20 25 30 40 50 70 100]; 

%round(v_start : v_stp : v_end); 

v;     

    if and( Theta_1 <= 40, v >= 5); 

        Theta_2i_stp = 2.5; 

    else 

        Theta_2i_stp = 1; 

    end 

Theta_2i_stp;         

  

  

  

    for k = row_start : 1 : n(1,1); 

    if and( round(Sol_mat(k,1)) == round(Theta_1) , Sol_mat(k,2) 

== v); 

        pe=pe+1; 

    end,end  

    Theta_2i_max= max(Sol_mat(ps:pe,3)); 

    ps = pe +1; 
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for Theta_2i = round(Theta_1 : Theta_2i_stp : Theta_2i_max); 

Theta_2i; 

  

iter= [ Theta_1 v Theta_2i ] 

  

Sol_mat_s=[]; 

     

  

    for j = row_start : 1 : n(1,1); 

    if and( round(Sol_mat(j,1)) == round(Theta_1) , Sol_mat(j,2) 

== v); 

        if Sol_mat(j,3) == Theta_2i; 

        me=me+1; 

%     else 

%         break 

    end,end,end  

     

%count 

%me = ms + count -1 

     

Sol_mat_s = Sol_mat(ms:me,:); 

Cap_Theta_1_max = max(Sol_mat_s(:,6)); 

Df_max = max(Sol_mat_s(:,8)); 

  

Sol_max_mat=[ Sol_max_mat; Theta_1, v, Theta_2i, 

Cap_Theta_1_max, Df_max]; 

  

ms = me +1; 

  

end %for Theta_2i 

save('PRBSM10') 

end %for v 

save('PRBSM10') 

end %for Theta_1  

save('PRBSM10') 

  

fprintf('         Theta_1         v       Theta_2i   THETA_1_max   

Df_max') 

Sol_max_mat 

  

save('PRBSM10') 

load('PRBSM10') 
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C.4 Plotting (bmax/X) vs. (θ2i) Over Range of (v) 

%-------------------------------------------- 

%  PRBSM08b should be open also and RUN first 

%-------------------------------------------- 

  

clc 

clear all 

clear figure 

  

load('PRBSM08b.mat') 

fprintf('         Theta_1         v         Theta_2i      b            

X           b/X') 

bx_max_mat 

%fprintf('         Theta_1         v        Theta_2i  

Cap_Theta_1') 

%Cap_Theta_1_max_mat 

n= size(bx_max_mat); 

ms= 1; 

me= 0; 

row_start= 1; 

  

Theta_2i_start = Theta_1_start; 

Theta_2i_end = 85; %in Degrees! 

  

bx_Limits_mat=[]; 

  

L_start = 1; 

L_end = (Theta_2i_end - Theta_1_start)/Theta_2i_stp + 1; 

  

for z_Theta_1 =Theta_1_start : Theta_1_stp : Theta_1_end 

z_Theta_1; 

  

for v = [1 2 3 4 5 6 8 10 12 14 16 18 20 25 30 40 50 70 100 150 

200 250 500] 

v; 

for j = row_start : 1 : n(1,1); 

j; 

    if and(bx_max_mat(j,2) == v , round(bx_max_mat(j,1)) == 

round(z_Theta_1)) 

        me=me+1; 

    else 

        break 

    end 

     

end 
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figure(z_Theta_1)  % b/x  

hold on 

grid on 

plot3(bx_max_mat(ms:me,6),bx_max_mat(ms:me,3),repmat(z_Theta_1,s

ize(bx_max_mat(ms:me,6)))) 

text(bx_max_mat(me,6)+0.05,bx_max_mat(me,3)+0.5,['v = 

',num2str(v)]) 

ylim([z_Theta_1 90]) 

xlabel('b_m_a_x/X') 

ylabel('\theta_2_i [deg]') 

set(gca,'xminortick','on') 

set(gca,'Yminortick','on') 

set(gca,'xminorgrid','on') 

set(gca,'yminorgrid','on') 

%title('b_m_a_x/X vs \theta_2_i for different (v) value') 

hold off 

  

row_start= me+1; 

ms= me+1; 

  

end 

  

Theta_2i_start = z_Theta_1; 

  

for Theta_2i = deg2rad([ Theta_2i_start : Theta_2i_stp : 

Theta_2i_end]); 

  

    m = sin(deg2rad(z_Theta_1))/sin(Theta_2i); 

    b_over_x_maxL= m/(cos(deg2rad(z_Theta_1))+cos(Theta_2i)*m); 

    b_over_x_minL= 

sin(deg2rad(z_Theta_1))/(cos(deg2rad(z_Theta_1))+cos(Theta_2i)*m

); 

     

    bx_Limits_mat= [bx_Limits_mat; 

z_Theta_1,rad2deg(Theta_2i),b_over_x_maxL,b_over_x_minL]; 

     

     

end 

  

figure(z_Theta_1) 

%grid on 

hold on 

%plot(bx_Limits_mat(:,2),bx_Limits_mat(:,1)) 

%plot(bx_Limits_mat(:,3),bx_Limits_mat(:,1)) 

plot3(bx_Limits_mat(L_start:L_end,3),bx_Limits_mat(L_start:L_end

,2),repmat(z_Theta_1,size(bx_Limits_mat(L_start:L_end,3))),'k','

LineWidth',2) %Max Limit  ,'k','LineWidth',2 
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plot3(bx_Limits_mat(L_start:L_end,4),bx_Limits_mat(L_start:L_end

,2),repmat(z_Theta_1,size(bx_Limits_mat(L_start:L_end,4))),'k','

LineWidth',2) %Min Limit 

% set(gca,'XTick',0:0.02:bx_Limits_mat(1,3)) 

% set(gca,'YTick',Theta_1_start:5:90) 

hold off 

  

 L_start= L_end + 1; 

 L_end= L_end +(Theta_2i_end/Theta_2i_stp) - (z_Theta_1 + 

Theta_1_stp) + 1; 

  

end 

  

fprintf('          Theta_1    Theta_2i   b/x MaxL     b/x MinL') 

bx_Limits_mat; 

  

save('drawing08b') 
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C.5 Plotting (Θ1) vs (θ2i) Over Range of (v) 

%-------------------------------------------- 

%  PRBSM10 should be open also and RUN first 

%-------------------------------------------- 

  

clc 

clear all 

clear figure 

  

load('PRBSM10 - 2.mat') 

fprintf('         Theta_1         v        Theta_2i  

THETA_1_maxL') 

Cap_Theta_1_max_limit_mat 

fprintf('         Theta_1         v        Theta_2i  Df_maxL') 

Df_max_limit_mat 

fprintf('         Theta_1         v       Theta_2i   THETA_1_max   

Df_max') 

Sol_max_mat 

  

n= size(Sol_max_mat); 

L= size(Cap_Theta_1_max_limit_mat); 

Y= size(Df_max_limit_mat); 

ms= 1; 

me= 0; 

row_start= 1; 

  

Theta_2i_end = 85; %in Degrees! 

  

  

Lt_start = 0; 

  

C_L={'bd-','rd-','gd-','bo-','ro-','go-', ... 

    'b+-','r+-','g+-','bx-','rx-','gx-', ... 

    'b*-','r*-','g*-','b.-','r.-','g.-'}; 

  

  

for z_Theta_1 = [20 30 40 50 60 70 80]  

z_Theta_1; 

i=0; 

for LL = 1 : 1 : L(1,1); 

    if Cap_Theta_1_max_limit_mat(LL,1)== z_Theta_1; 

        Lt_start= LL; 

        break 

    end 

end 

Lt_end= LL + [(Theta_2i_end - z_Theta_1)]; 
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for v = [2 3 4 5 6 8 10 12 14 16 18 20 25 30 40 50 70 100] 

%v_start : v_stp : v_end; %[1 2 3 4 5 6 8 10 12 14 16 18 20 25 

30 40 50 70 100 150 200 250 500] %v_start : v_stp : v_end; 

%round(logspace(log10(5), log10(500),15)) 

v; 

i=i+1; 

for j = row_start : 1 : n(1,1); 

j; 

    if and(Sol_max_mat(j,2) == v , round(Sol_max_mat(j,1)) == 

round(z_Theta_1)) 

        me=me+1; 

    else 

        break 

    end 

     

end 

  

figure(z_Theta_1) 

hold on 

grid on 

plot3(Sol_max_mat(ms:me,4),Sol_max_mat(ms:me,3),repmat(z_Theta_1

,size(Sol_max_mat(ms:me,3))),C_L{i}) %  ,'LineSmoothing','on' 

%text(Sol_max_mat(ms,3),Sol_max_mat(ms,4),num2str(v)) 

% ylim([z_Theta_1 85]) 

xlim([0 90]) % original ylim([0 90-z_Theta_1+5]) 

% set(gca,'YTick',[z_Theta_1 : 1 : 85]) 

% set(gca,'XTick',[0 : 1 : 20]) 

% set(gca,'xminortick','on') 

% set(gca,'Yminortick','on') 

% set(gca,'xminorgrid','on') 

% set(gca,'yminorgrid','on') 

ylabel('\theta_2_i [deg]') 

xlabel('\Theta_1 [deg]') 

%title('\Theta1 vs \theta2i for different (v) value') 

mytitle=sprintf('(\\theta_1=%d^o)     \\Theta_1 vs \\theta_2_i 

for different (v) values',z_Theta_1); 

% title(mytitle) 

%legend('2', '3', '4', '5', '6', '8', '10', '12', '14', '16', 

'18', '20', '25', '30', '40', '50', '70', 

'100','Location','East') 

hold off 

  

row_start= me+1; 

ms= me+1; 
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end 

  

figure(z_Theta_1) 

hold on 

plot3(Cap_Theta_1_max_limit_mat(Lt_start:Lt_end,4),Cap_Theta_1_m

ax_limit_mat(Lt_start:Lt_end,3),repmat(z_Theta_1,size(Cap_Theta_

1_max_limit_mat(Lt_start:Lt_end,3))),'k','LineWidth',2) %Max 

Limit  ,'k','LineWidth',2  ,'LineSmoothing','on' 

legend('v=2', 'v=3', 'v=4', 'v=5', 'v=6', 'v=8', 'v=10', 'v=12', 

'v=14', 'v=16', 'v=18', 'v=20', 'v=25', 'v=30', 'v=40', 'v=50', 

'v=70', 'v=100','location','East') 

% set(gca,'XTick',z_Theta_1:2:Theta_2i_end) 

% set(gca,'YTick',Theta_1_start:5:90) 

hold off 

  

 %print figure(z_Theta_1) -dtiff -r600 

  

end 

  

save('drawing10Theta') 
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C.6 Plotting ( f ) vs (θ2i) Over Range of (v) for the First Approach 

%-------------------------------------------- 

%  PRBSM10 should be open also and RUN first 

%---------------------------------------------- 

% The non-dimensional force for the first approach 

%-------------------------------------------------- 

  

clc 

clear all 

clear figure 

  

load('PRBSM10 - 2.mat') 

fprintf('         Theta_1         v        Theta_2i  

THETA_1_maxL') 

Cap_Theta_1_max_limit_mat 

fprintf('         Theta_1         v        Theta_2i  Df_maxL') 

Df_max_limit_mat 

fprintf('         Theta_1         v       Theta_2i   THETA_1_max   

Df_max') 

Sol_max_mat 

  

n= size(Sol_max_mat); 

L= size(Cap_Theta_1_max_limit_mat); 

Y= size(Df_max_limit_mat); 

ms= 1; 

me= 0; 

row_start= 1; 

  

Theta_2i_end = 85; %in Degrees! 

  

Lf_start = 0; 

  

C_L={'bd-','rd-','gd-','bo-','ro-','go-', ... 

    'b+-','r+-','g+-','bx-','rx-','gx-', ... 

    'b*-','r*-','g*-','b.-','r.-','g.-'}; 

  

for z_Theta_1 = [20 30 40 50 60 70 80]  

z_Theta_1; 

i=0; 

for YY = 1 : 1 : Y(1,1); 

    if Df_max_limit_mat(YY,1)== z_Theta_1; 

        Lf_start= YY; 

        break 

    end 

end 

Lf_end= YY + [(Theta_2i_end - z_Theta_1)]; 
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for v = [2 3 4 5 6 8 10 12 14 16 18 20 25 30 40 50 70 100]  

v; 

i=i+1; 

for j = row_start : 1 : n(1,1); 

j; 

    if and(Sol_max_mat(j,2) == v , round(Sol_max_mat(j,1)) == 

round(z_Theta_1)) 

        me=me+1; 

    else 

        break 

    end 

     

end 

  

%%ys = 

smooth(Cap_Theta_1_max_mat(ms:me,3),Cap_Theta_1_max_mat(ms:me,4)

,10,'rloess'); 

  

figure(z_Theta_1) 

hold on 

grid on 

plot3(Sol_max_mat(ms:me,5),Sol_max_mat(ms:me,3),repmat(z_Theta_1

,size(Sol_max_mat(ms:me,5))),C_L{i}) %  ,'LineSmoothing','on' 

% text(Sol_max_mat(me,5)+0.03,Sol_max_mat(me,3),['v= 

',num2str(v)]) 

% xlim([0 0.4]) 

ylim([z_Theta_1 85]) % 90 original 

% set(gca,'XTick',[0 : 0.04 : 0.4]) 

% set(gca,'YTick',[z_Theta_1 : 2 : 85]) 

% set(gca,'xminortick','on') 

% set(gca,'Yminortick','on') 

% set(gca,'xminorgrid','on') 

% set(gca,'yminorgrid','on') 

xlabel('Df') 

ylabel('\theta_2_i [deg]') 

%title('Df vs \theta2i for different (v) value') 

mytitle=sprintf('(\\theta_1=%d^o)     Df vs \\theta_2_i for 

different (v) values',z_Theta_1); 

% % title(mytitle) 

hold off 

  

row_start= me+1; 

ms= me+1; 

  

end 
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figure(z_Theta_1) 

hold on 

plot3(Df_max_limit_mat(Lf_start:Lf_end,4),Df_max_limit_mat(Lf_st

art:Lf_end,3),repmat(z_Theta_1,size(Df_max_limit_mat(Lf_start:Lf

_end,4))),'k','LineWidth',2) %Max Limit  ,'k','LineWidth',2  

,'LineSmoothing','on' 

legend('v=2', 'v=3', 'v=4', 'v=5', 'v=6', 'v=8', 'v=10', 'v=12', 

'v=14', 'v=16', 'v=18', 'v=20', 'v=25', 'v=30', 'v=40', 'v=50', 

'v=70', 'v=100','location','East') 

% set(gca,'XTick',z_Theta_1:2:Theta_2i_end) 

% set(gca,'YTick',Theta_1_start:5:90) 

hold off 

  

end 

save('drawing10Df') 
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C.7 Plotting (J) vs (θ2i) Over Range of (v) for the Second Approach 

%-------------------------------------------- 

%  PRBSM10 should be open also and RUN first 

%----------------------------------------------- 

% The non-dimensional force for the second approach 

%-------------------------------------------------- 

  

clc 

clear all 

clear figure 

  

load('PRBSM10 - 2.mat') 

fprintf('         Theta_1         v        Theta_2i  

THETA_1_maxL') 

Cap_Theta_1_max_limit_mat 

fprintf('         Theta_1         v        Theta_2i  Df_maxL') 

Df_max_limit_mat 

fprintf('         Theta_1         v       Theta_2i   THETA_1_max   

Df_max') 

Sol_max_mat 

  

C_L={'bd-','rd-','gd-','bo-','ro-','go-', ... 

    'b+-','r+-','g+-','bx-','rx-','gx-', ... 

    'b*-','r*-','g*-','b.-','r.-','g.-'}; 

  

rr = 1;           % =0 for LOW ,, =1 for HIGH 

  

if rr == 0; 

    vv=[2 3 4 5 6 8 10 12 14 16 18 20]; 

    else vv=[25 30 40 50 70 100]; end 

  

for z_Theta_1 = [20 30 40 50 60 70] %Theta_1_start : Theta_1_stp 

: Theta_1_end 

z_Theta_1; 

i=0; 

row_start= 1; 

  

if round(z_Theta_1) == round(20) 

    if rr == 0; 

    Sol_max_mat = J_20_low; 

    figure(z_Theta_1) 

    hold on 

    xlim([20 46]) 

    ylim([0 0.9]) 

    set(gca,'XTick',[20 : 2 : 46]) 

    set(gca,'YTick',[0 : 0.1 : 0.9]) 
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    hold off 

    else 

    Sol_max_mat = J_20_high; 

    figure(z_Theta_1) 

    hold on 

    xlim([20 66]) 

    ylim([0 20]) 

    set(gca,'XTick',[20 : 2 : 66]) 

    set(gca,'YTick',[0 : 2 : 20]) 

    hold off 

    end 

end 

if round(z_Theta_1) == round(30) 

    if rr == 0; 

    Sol_max_mat = J_30_low; 

    figure(z_Theta_1) 

    hold on 

    xlim([30 60]) 

    ylim([0 1.2]) 

    set(gca,'XTick',[30 : 2 : 60]) 

    set(gca,'YTick',[0 : 0.1 : 1.2]) 

    hold off 

    else 

    Sol_max_mat = J_30_high; 

    figure(z_Theta_1) 

    hold on 

    xlim([30 74]) 

    ylim([0 26]) 

    set(gca,'XTick',[30 : 2 : 74]) 

    set(gca,'YTick',[0 : 2 : 26]) 

    hold off 

    end 

end 

if round(z_Theta_1) == round(40) 

    if rr == 0; 

    Sol_max_mat = J_40_low; 

    figure(z_Theta_1) 

    hold on     

    xlim([40 66]) 

    ylim([0 1.3]) 

    set(gca,'XTick',[40 : 2 : 66]) 

    set(gca,'YTick',[0 : 0.1 : 1.3]) 

    hold off 

    else 

    Sol_max_mat = J_40_high; 

    figure(z_Theta_1) 

    hold on     
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    xlim([40 80]) 

    ylim([0 30]) 

    set(gca,'XTick',[40 : 2 : 80]) 

    set(gca,'YTick',[0 : 2 : 30]) 

    hold off 

    end 

end 

if round(z_Theta_1) == round(50) 

    if rr == 0; 

    Sol_max_mat = J_50_low; 

    figure(z_Theta_1) 

    hold on     

    xlim([50 74]) 

    ylim([0 1.4]) 

    set(gca,'XTick',[50 : 2 : 74]) 

    set(gca,'YTick',[0 : 0.1 : 1.4]) 

    hold off 

    else 

    Sol_max_mat = J_50_high; 

    figure(z_Theta_1) 

    hold on     

    xlim([50 80]) 

    ylim([0 34]) 

    set(gca,'XTick',[50 : 2 : 80]) 

    set(gca,'YTick',[0 : 2 : 34]) 

    hold off 

    end 

end 

if round(z_Theta_1) == round(60) 

    if rr == 0; 

    Sol_max_mat = J_60_low; 

    figure(z_Theta_1) 

    hold on 

    xlim([60 77]) 

    ylim([0 1.8]) 

    set(gca,'XTick',[60 : 1 : 77]) 

    set(gca,'YTick',[0 : 0.2 : 1.8]) 

    hold off 

    else 

    Sol_max_mat = J_60_high; 

    figure(z_Theta_1) 

    hold on 

    xlim([60 83]) 

    ylim([0 40]) 

    set(gca,'XTick',[60: 1 : 83]) 

    set(gca,'YTick',[0 : 5 : 40]) 

    hold off 
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    end 

end 

if round(z_Theta_1) == round(70) 

    if rr == 0; 

    Sol_max_mat = J_70_low; 

    figure(z_Theta_1) 

    hold on 

    xlim([70 80]) 

    ylim([0 3.4]) 

    set(gca,'XTick',[70 : 1 : 80]) 

    set(gca,'YTick',[0 : 0.2 : 3.4]) 

    hold off 

    else 

    Sol_max_mat = J_70_high; 

    figure(z_Theta_1) 

    hold on 

    xlim([70 84]) 

    ylim([0 70]) 

    set(gca,'XTick',[70 : 1 : 84]) 

    set(gca,'YTick',[0 : 5 : 70]) 

    hold off 

    end 

end 

  

n= size(Sol_max_mat); 

ms= 1; 

me= 0; 

  

for v = vv ; 

v; 

i=i+1; 

for j = row_start : 1 : n(1,1); 

j; 

    if and(round(Sol_max_mat(j,2)) == round(v) , 

round(Sol_max_mat(j,1)) == round(z_Theta_1)) 

        me=me+1; 

    else 

        break 

    end 

     

end 

  

figure(z_Theta_1) 

hold on 

grid on 

plot3(Sol_max_mat(ms:me,3),Sol_max_mat(ms:me,6),repmat(z_Theta_1

,size(Sol_max_mat(ms:me,3))),C_L{i}) %  ,'LineSmoothing','on' 
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% text(Sol_max_mat(me,5)+0.03,Sol_max_mat(me,3),['v= 

',num2str(v)]) 

% xlim([Sol_max_mat(ms,3) Sol_max_mat(me,3)]) 

% ylim([z_Theta_1 85]) % 90 original 

% set(gca,'XTick',[Sol_max_mat(ms,3) : 1 : Sol_max_mat(me,3)]) 

% set(gca,'YTick',[z_Theta_1 : 2 : 85]) 

set(gca,'xminortick','on') 

set(gca,'Yminortick','on') 

set(gca,'xminorgrid','on') 

set(gca,'yminorgrid','on') 

xlabel('\theta_2_i [deg]') 

ylabel('J') 

%title('Df vs \theta2i for different (v) value') 

mytitle=sprintf('(\\theta_1=%d^o)     Df vs \\theta_2_i for 

different (v) values',z_Theta_1); 

% % title(mytitle) 

hold off 

  

row_start= me+1; 

ms= me+1; 

  

end 

  

figure(z_Theta_1) 

hold on 

% 

plot3(Df_max_limit_mat(Lf_start:Lf_end,4),Df_max_limit_mat(Lf_st

art:Lf_end,3),repmat(z_Theta_1,size(Df_max_limit_mat(Lf_start:Lf

_end,4))),'k','LineWidth',2) %Max Limit  ,'k','LineWidth',2  

,'LineSmoothing','on' 

if rr == 0; 

    legend('v=2', 'v=3', 'v=4', 'v=5', 'v=6', 'v=8', 'v=10', 

'v=12', 'v=14', 'v=16', 'v=18', 'v=20','location','East') 

else 

    legend('v=25', 'v=30', 'v=40', 'v=50', 'v=70', 

'v=100','location','East') 

end 

% set(gca,'XTick',z_Theta_1:2:Theta_2i_end) 

% set(gca,'YTick',Theta_1_start:5:90) 

hold off 

  

end 

  

save('drawing10Df2ndapp') 
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C.8 Cylindrical SMSF Morph Code 

clc, clear all 

format short g 

  

n=10;                        %number of sides "s" 

m=4;                         %number of slice "k" 

  

%--------------------- 

% 1st try: 10,4,150,70,-80, 11      Hyperbolic 

% 2nd try: 10,4,150,-70,80, 22      Spherical 

% 3rd try: 8,4,75,-35,-80 

% 4th try: 

%--------------------- 

  

ro_o= 150;                    %circumradius 

a= 2*ro_o*sin(pi/n);          %side length   "ls" 

h_o= m*a;                     %initial total height 

h_f=000;                      % h_f should be > h_o 

delta_ro= -70;                %change in ro (minimum value along 

the height) 

Delta_theta= 80;              %total change in slice rotational 

angle along the height 

h_j=0;                        %the start height, first loop is 

'zero' then changes 

  

count=0; 

error=0; 

Sol_mat_p=[];    Sol_mat2_p=[]; 

Sol_mat_q=[];    Sol_mat2_q=[]; 

Sol_mat_q_r=[];  Sol_mat2_q_r=[]; 

  

L_p_mat=[]; L_q_mat=[]; L_q_r_mat=[]; 

Delta_mat=[]; 

rf= 100;                     %decimal rounding i.e. (100 -> 

0.00) 

  

bs_xb_p_mat=[];              %Points coordinates for Original 

Shape j i=1,2 

bs_xb_q_r_mat=[];            %Points coordinates for twist with 

calculated height j i=1,2 

Points_p_mat_f=[];           %Points coordinates for Original 

Shape (vertical stripe) "FLAT" 

Points_q_r_mat_f=[];         %Points coordinates for twist with 

calculated height (vertical stripe) "FLAT" 

Points_p_mat_t=[];           %Points coordinates for Original 

Shape (original stripe) "TWIST" 
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Points_q_r_mat_t=[];         %Points coordinates for twist with 

calculated height (original stripe) "TWIST" 

  

  

  

TAG=0;                       %adding Tag to points '[j i count]' 

(Yes=1, No=0)  

TAGc=1;                      %adding Tag to center of m (Yes=1, 

No=0) 

TAGs=1;                      %adding Tag to sids (Yes=1, No=0) 

TAGd=0;                      %adding Tag to Diagonals (Yes=1, 

No=0) 

Diagonal=22;                 %showing Diagonal lines (Yes=11 to 

the right, Yes=22 to the left, No=00) 

Model_Check=1;               %checking the model possibility! 

(Yes=1, No=0) 

  

[n m ro_o a h_o delta_ro Delta_theta]; 

  

for j= 1 : m+1; 

    for i= 1 : n+1; 

        [j i]; count=count+1; 

        Theta_i_1= (2*pi/n)*(i-1);  

        Theta_i= (2*pi/n)*(i); 

         

        Delta_theta_j= (Delta_theta/m)*(j-1); 

        Delta_Theta_j_1= (Delta_theta/m)*(j-2); 

        Delta_theta_j_plus_1= (Delta_theta/m)*(j+1-1);   

         

        h_o_j_1= (h_o/m)*(j-1); 

        %%% h_j= (h_o/m)*(j); 

         

         

        ro_factor_1= delta_ro * (1 - (2/h_o)^2 * (h_o/m)^2 * (j-

1-(m/2))^2); 

        ro_factor_2= delta_ro * (1 - (2/h_o)^2 * (h_o/m)^2 * 

(j+1-1-(m/2))^2); 

        if abs(ro_factor_1)<0.0001, [j i];, ro_factor_1=0;, end 

        if abs(ro_factor_2)<0.0001, [j i];, ro_factor_2=0;, end         

        ro_j = ro_o - ro_factor_1; 

        ro_j_plus_1 = ro_o - ro_factor_2; 

         

         

        % Model possibility Check !! 

        if Model_Check == 1 

        ro_chk_1= 0;      %or same as -->   %delta_ro * (1 - 

(2/h_o)^2 * (h_o/m)^2 * (1-1-(m/2))^2); 
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        ro_chk_2=  delta_ro*(4*(m-1)/m^2);  %or same as -->   

%delta_ro * (1 - (2/h_o)^2 * (h_o/m)^2 * (1+1-1-(m/2))^2); 

        if or( ro_chk_1 > a, ro_chk_2 > a) 

            error= 1, sprintf('Impossible Model !! decrease (n) 

or increase (m) or decrease (delta_ro)'), break, end, end 

         

         

        % original cylinder meshed 

        p_i_1 =[ro_o * cos(Theta_i_1), ro_o * sin(Theta_i_1),  

h_o_j_1]; 

        p_i =[ro_o * cos(Theta_i), ro_o * sin(Theta_i),  

h_o_j_1]; 

        d_i = p_i - p_i_1; 

        L_p=sqrt( d_i(1,1)^2 + d_i(1,2)^2 + d_i(1,3)^3); 

        L_p_point=[(p_i(1,1)+p_i_1(1,1))/2, 

(p_i(1,2)+p_i_1(1,2))/2, p_i_1(1,3)]; 

         

         

        % twisted cylinder with over all height = h_o 

        q_i_1 =[ro_j * cos(Theta_i_1 + deg2rad(Delta_theta_j)), 

ro_j * sin(Theta_i_1 + deg2rad(Delta_theta_j)),  h_o_j_1]; 

        q_i =[ro_j * cos(Theta_i + deg2rad(Delta_theta_j)), ro_j 

* sin(Theta_i + deg2rad(Delta_theta_j)),  h_o_j_1]; 

        dd_i = q_i - q_i_1; 

        L_q=sqrt( dd_i(1,1)^2 + dd_i(1,2)^2 + dd_i(1,3)^3); 

        L_q_point=[(q_i(1,1)+q_i_1(1,1))/2, 

(q_i(1,2)+q_i_1(1,2))/2, q_i_1(1,3)]; 

         

         

        % twisted cylinder with calculated height 

        q_r_i_1 =[ro_j * cos(Theta_i_1 + 

deg2rad(Delta_theta_j)), ro_j * sin(Theta_i_1 + 

deg2rad(Delta_theta_j)),  h_j]; 

        q_r_i =[ro_j * cos(Theta_i + deg2rad(Delta_theta_j)), 

ro_j * sin(Theta_i + deg2rad(Delta_theta_j)),  h_j]; 

        dd_r_i = q_r_i - q_r_i_1; 

        L_q_r=sqrt( dd_r_i(1,1)^2 + dd_r_i(1,2)^2 + 

dd_r_i(1,3)^3);  

        L_q_r_point=[(q_r_i(1,1)+q_r_i_1(1,1))/2, 

(q_r_i(1,2)+q_r_i_1(1,2))/2, q_r_i_1(1,3)]; 

  

         

        if i==1, 

            L_p_mat=[L_p_mat; j 0 0 0 0 0];       L_p_mat(j,2)= 

L_p;  

            L_q_mat=[L_q_mat; j 0 0 0 0 0];       L_q_mat(j,2)= 

L_q; 
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            L_q_r_mat=[L_q_r_mat; j 0 0 0 0 0];   

L_q_r_mat(j,2)= L_q_r; 

        end 

         

        % replacing small number with "Zero" 

        if abs(p_i_1(1,1))<0.0001, [j i];, p_i_1(1,1)=0;, end 

        if abs(p_i_1(1,2))<0.0001, [j i];, p_i_1(1,2)=0;, end 

        if abs(q_i_1(1,1))<0.0001, [j i];, q_i_1(1,1)=0;, end 

        if abs(q_i_1(1,2))<0.0001, [j i];, q_i_1(1,2)=0;, end 

        if abs(q_r_i_1(1,1))<0.0001, [j i];, q_r_i_1(1,1)=0;, 

end 

        if abs(q_r_i_1(1,2))<0.0001, [j i];, q_r_i_1(1,2)=0;, 

end 

         

        % Solution matrix 

        Sol_mat_p=[Sol_mat_p; j i p_i_1 ro_o L_p count]; 

        Sol_mat_q=[Sol_mat_q; j i q_i_1 ro_j L_q count]; 

        Sol_mat_q_r=[Sol_mat_q_r; j i q_r_i_1 ro_j L_q_r count]; 

         

        Sol_mat2_p=[Sol_mat2_p; count j i ro_o 0 L_p]; 

        Sol_mat2_q=[Sol_mat2_q; count j i ro_j Delta_theta_j 

L_q]; 

        Sol_mat2_q_r=[Sol_mat2_q_r; count j i ro_j Delta_theta_j 

L_q_r]; 

         

        if or( i == 1, i ==2 ) 

            bs_xb_p_mat= [bs_xb_p_mat; j i p_i_1 ro_o 0 count]; 

            bs_xb_q_r_mat= [bs_xb_q_r_mat; j i q_r_i_1 ro_j 

Delta_theta_j count]; 

        end 

         

         

        figure(1) 

        hold on 

        %xlim([-100 100]), ylim([-100 100]), zlim([0 

ceil(h_o/10)*10]) 

        set(gca,'XTick',[-150 : 50 : 150]), set(gca,'YTick',[-

150 : 50 : 150]), %set(gca,'ZTick',[0 : h_o]) 

        if and(i~=(n+1), TAG==1), text([p_i_1(1,1)], 

[p_i_1(1,2)], [p_i_1(1,3)],['  ' num2str(j) ',' num2str(i) ',' 

num2str(count)]), end 

        if and(i~=(n+1), TAGc==1), text([0], [0], 

[p_i_1(1,3)],[num2str(p_i_1(1,3))]), end  

                                 %, plot3([0], [0], 

[p_i_1(1,3)],'b.','LineWidth',2), end 

        % Drawing the links n 
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        plot3([p_i(1,1)], [p_i(1,2)], 

[p_i(1,3)],'r*','LineWidth',2) 

        plot3([p_i_1(1,1) p_i(1,1)], [p_i_1(1,2) p_i(1,2)], 

[p_i_1(1,3) p_i(1,3)],'k','LineWidth',2) 

        if and(i==1, TAGs==1), 

text([L_p_point(1,1)],[L_p_point(1,2)],[L_p_point(1,3)],['    ' 

num2str(L_p)]),  

                             , 

plot3([L_p_point(1,1)],[L_p_point(1,2)],[L_p_point(1,3)],'b*','L

ineWidth',2), end 

        hold off 

         

        figure(2) 

        hold on 

        %xlim([-100 100]), ylim([-100 100]), zlim([0 

ceil(h_o/10)*10]) 

        set(gca,'XTick',[-100 : 20 : 100]), set(gca,'YTick',[-

100 : 20 : 100]), %set(gca,'ZTick',[0 : h_o]) 

        if and(i~=(n+1), TAG==1), text([q_i_1(1,1)], 

[q_i_1(1,2)], [q_i_1(1,3)],['  ' num2str(j) ',' num2str(i) ',' 

num2str(count)]), end 

        if and(i~=(n+1), TAGc==1), text([0], [0], 

[q_i_1(1,3)],[num2str(q_i_1(1,3))]), end 

                                 %, plot3([0], [0], 

[q_i_1(1,3)],'b.','LineWidth',2), end 

        % Drawing the links n 

        plot3([q_i(1,1)], [q_i(1,2)], 

[q_i(1,3)],'r*','LineWidth',2) 

        plot3([q_i_1(1,1) q_i(1,1)], [q_i_1(1,2) q_i(1,2)], 

[q_i_1(1,3) q_i(1,3)],'k','LineWidth',2) 

        if and(i==1, TAGs==1), 

text([L_q_point(1,1)],[L_q_point(1,2)],[L_q_point(1,3)],['    ' 

num2str(L_q)]), 

                             , 

plot3([L_q_point(1,1)],[L_q_point(1,2)],[L_q_point(1,3)],'b*','L

ineWidth',2), end 

        hold off 

         

        figure(3) 

        hold on 

        %xlim([-100 100]), ylim([-100 100]), zlim([0 

ceil(h_o/10)*10]) 

        set(gca,'XTick',[-150 : 50 : 150]), set(gca,'YTick',[-

150 : 50 : 150]), %set(gca,'ZTick',[0 : h_o]) 

        if and(i~=(n+1), TAG==1), text([q_r_i_1(1,1)], 

[q_r_i_1(1,2)], [q_r_i_1(1,3)],['  ' num2str(j) ',' num2str(i) 

',' num2str(count)]), end 
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        if and(i~=(n+1), TAGc==1), text([0], [0], 

[q_r_i_1(1,3)],[num2str(q_r_i_1(1,3))]), end 

                                 %, plot3([0], [0], 

[q_r_i_1(1,3)],'b.','LineWidth',2), end 

        % Drawing the links n 

        plot3([q_r_i(1,1)], [q_r_i(1,2)], 

[q_r_i(1,3)],'r*','LineWidth',2) 

        plot3([q_r_i_1(1,1) q_r_i(1,1)], [q_r_i_1(1,2) 

q_r_i(1,2)], [q_r_i_1(1,3) q_r_i(1,3)],'k','LineWidth',2) 

        if and(i==1, TAGs==1), 

text([L_q_r_point(1,1)],[L_q_r_point(1,2)],[L_q_r_point(1,3)],['    

' num2str(L_q_r)]), 

                             , 

plot3([L_q_r_point(1,1)],[L_q_r_point(1,2)],[L_q_r_point(1,3)],'

b*','LineWidth',2), end 

        hold off 

         

         

         

    end 

     

     

        % Model possibility Check !! 

        if error== 1, sprintf('Impossible Model !! decrease (n) 

or increase (m) or decrease (delta_ro)'), break, end 

     

        % to find the height z with the twist 

        if j < m+1 

            i=1; j; 

            qh_j_1 =[ro_j * cos(Theta_i_1 + 

deg2rad(Delta_theta_j)), ro_j * sin(Theta_i_1 + 

deg2rad(Delta_theta_j)),  h_j]; 

            qh_j =[ro_j_plus_1 * cos(Theta_i_1 + 

deg2rad(Delta_theta_j_plus_1)), ro_j_plus_1 * sin(Theta_i_1 + 

deg2rad(Delta_theta_j_plus_1))]; 

            if abs(qh_j_1(1,2))<0.001, [j i];, qh_j_1(1,2)=0;, 

end  

            if abs(qh_j(1,2))<0.001, [j i];, qh_j(1,2)=0;, end  

            h_j =sqrt(a^2 - (qh_j(1,1) - qh_j_1(1,1))^2 - 

(qh_j(1,2) - qh_j_1(1,2))^2 ) + h_j; % shorter  

            %h_j =sqrt(a^2 + (qh_j(1,1) - qh_j_1(1,1))^2 + 

(qh_j(1,2) - qh_j_1(1,2))^2 ) + h_j;  % longer 

            h_j; 

        end 
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end 

  

  

  

for j= 1 : m; 

     

    % Model possibility Check !! 

    if error== 1, sprintf('Impossible Model !! decrease (n) or 

increase (m) or decrease (delta_ro)'), break, end 

  

    for i= (1+(j-1)*(n+1)) : (j*(n+1)); 

        [j i (1+(j-1)*(n+1)) (j*(n+1))]; 

         

     

        if i~=(n+1)*j 

            [j i n+1+i+1]; 

             

            L_p_m= sqrt( (Sol_mat_p(i,3)-Sol_mat_p(n+1+i,3))^2 + 

(Sol_mat_p(i,4)-Sol_mat_p(n+1+i,4))^2 + (Sol_mat_p(i,5)-

Sol_mat_p(n+1+i,5))^2 ); 

            L_p_m_point= [ 

(Sol_mat_p(i,3)+Sol_mat_p(n+1+i,3))/2, 

(Sol_mat_p(i,4)+Sol_mat_p(n+1+i,4))/2, 

(Sol_mat_p(i,5)+Sol_mat_p(n+1+i,5))/2]; 

            L_p_d1= sqrt( (Sol_mat_p(i,3)-

Sol_mat_p(n+1+i+1,3))^2 + (Sol_mat_p(i,4)-

Sol_mat_p(n+1+i+1,4))^2 + (Sol_mat_p(i,5)-

Sol_mat_p(n+1+i+1,5))^2); 

            L_p_d2= sqrt( (Sol_mat_p(i+1,3)-Sol_mat_p(n+1+i+1-

1,3))^2 + (Sol_mat_p(i+1,4)-Sol_mat_p(n+1+i+1-1,4))^2 + 

(Sol_mat_p(i+1,5)-Sol_mat_p(n+1+i+1-1,5))^2); 

            L_p_d1_point= [ 

(Sol_mat_p(i,3)+Sol_mat_p(n+1+i+1,3))/2, 

(Sol_mat_p(i,4)+Sol_mat_p(n+1+i+1,4))/2, 

(Sol_mat_p(i,5)+Sol_mat_p(n+1+i+1,5))/2]; 

                         

            L_q_m= sqrt( (Sol_mat_q(i,3)-Sol_mat_q(n+1+i,3))^2 + 

(Sol_mat_q(i,4)-Sol_mat_q(n+1+i,4))^2 + (Sol_mat_q(i,5)-

Sol_mat_q(n+1+i,5))^2 ); 

            L_q_m_point= [ 

(Sol_mat_q(i,3)+Sol_mat_q(n+1+i,3))/2, 

(Sol_mat_q(i,4)+Sol_mat_q(n+1+i,4))/2, 

(Sol_mat_q(i,5)+Sol_mat_q(n+1+i,5))/2]; 

            L_q_d1= sqrt( (Sol_mat_q(i,3)-

Sol_mat_q(n+1+i+1,3))^2 + (Sol_mat_q(i,4)-

Sol_mat_q(n+1+i+1,4))^2 + (Sol_mat_q(i,5)-

Sol_mat_q(n+1+i+1,5))^2); 
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            L_q_d2= sqrt( (Sol_mat_q(i+1,3)-Sol_mat_q(n+1+i+1-

1,3))^2 + (Sol_mat_q(i+1,4)-Sol_mat_q(n+1+i+1-1,4))^2 + 

(Sol_mat_q(i+1,5)-Sol_mat_q(n+1+i+1-1,5))^2); 

            L_q_d1_point= [ 

(Sol_mat_q(i,3)+Sol_mat_q(n+1+i+1,3))/2, 

(Sol_mat_q(i,4)+Sol_mat_q(n+1+i+1,4))/2, 

(Sol_mat_q(i,5)+Sol_mat_q(n+1+i+1,5))/2]; 

             

            L_q_r_m= sqrt( (Sol_mat_q_r(i,3)-

Sol_mat_q_r(n+1+i,3))^2 + (Sol_mat_q_r(i,4)-

Sol_mat_q_r(n+1+i,4))^2 + (Sol_mat_q_r(i,5)-

Sol_mat_q_r(n+1+i,5))^2 ); 

            L_q_r_m_point= [ 

(Sol_mat_q_r(i,3)+Sol_mat_q_r(n+1+i,3))/2, 

(Sol_mat_q_r(i,4)+Sol_mat_q_r(n+1+i,4))/2, 

(Sol_mat_q_r(i,5)+Sol_mat_q_r(n+1+i,5))/2]; 

            L_q_r_d1= sqrt( (Sol_mat_q_r(i,3)-

Sol_mat_q_r(n+1+i+1,3))^2 + (Sol_mat_q_r(i,4)-

Sol_mat_q_r(n+1+i+1,4))^2 + (Sol_mat_q_r(i,5)-

Sol_mat_q_r(n+1+i+1,5))^2); 

            L_q_r_d2= sqrt( (Sol_mat_q_r(i+1,3)-

Sol_mat_q_r(n+1+i+1-1,3))^2 + (Sol_mat_q_r(i+1,4)-

Sol_mat_q_r(n+1+i+1-1,4))^2 + (Sol_mat_q_r(i+1,5)-

Sol_mat_q_r(n+1+i+1-1,5))^2); 

            L_q_r_d1_point= [ 

(Sol_mat_q_r(i,3)+Sol_mat_q_r(n+1+i+1,3))/2, 

(Sol_mat_q_r(i,4)+Sol_mat_q_r(n+1+i+1,4))/2, 

(Sol_mat_q_r(i,5)+Sol_mat_q_r(n+1+i+1,5))/2]; 

             

             

            if i==(1+(j-1)*(n+1)), 

                L_p_mat(j,3)=L_p_mat(j+1,2);        

L_p_mat(j,4)= L_p_m;        L_p_mat(j,5)= L_p_d1;       

L_p_mat(j,6)= L_p_d2; 

                L_q_mat(j,3)=L_q_mat(j+1,2);        

L_q_mat(j,4)= L_q_m;        L_q_mat(j,5)= L_q_d1;       

L_q_mat(j,6)= L_q_d2; 

                L_q_r_mat(j,3)=L_q_r_mat(j+1,2);    

L_q_r_mat(j,4)= L_q_r_m;    L_q_r_mat(j,5)= L_q_r_d1;   

L_q_r_mat(j,6)= L_q_r_d2; 

            end 

             

             

            figure(1) 

            hold on 

            xlabel('X'),ylabel('Y'),zlabel('Z') 

            % Drawing the links between m 
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            plot3([Sol_mat_p(i,3) Sol_mat_p(n+1+i,3)], 

[Sol_mat_p(i,4) Sol_mat_p(n+1+i,4)], [Sol_mat_p(i,5) 

Sol_mat_p(n+1+i,5)],'b','LineWidth',2) 

            if and(i==(1+(j-1)*(n+1)), TAGs==1), 

text([L_p_m_point(1,1)],[L_p_m_point(1,2)],[L_p_m_point(1,3)],['    

' num2str(L_p_m)]), 

               , plot3([L_p_m_point(1,1)], [L_p_m_point(1,2)], 

[L_p_m_point(1,3)],'b*','LineWidth',2), end 

            % Drawing the Diagonal links 

            if Diagonal==11, plot3([Sol_mat_p(i,3) 

Sol_mat_p(n+1+i+1,3)], [Sol_mat_p(i,4) Sol_mat_p(n+1+i+1,4)], 

[Sol_mat_p(i,5) Sol_mat_p(n+1+i+1,5)],'k','LineWidth',2), end 

            if Diagonal==22, plot3([Sol_mat_p(i+1,3) 

Sol_mat_p(n+1+i+1-1,3)], [Sol_mat_p(i+1,4) Sol_mat_p(n+1+i+1-

1,4)], [Sol_mat_p(i+1,5) Sol_mat_p(n+1+i+1-

1,5)],'k','LineWidth',2), end 

            if and(i==(2+(j-1)*(n+1)), TAGd==1), 

text([L_p_d1_point(1,1)],[L_p_d1_point(1,2)],[L_p_d1_point(1,3)]

,['    ' num2str(L_p_d1)]), 

               , plot3([L_p_d1_point(1,1)], [L_p_d1_point(1,2)], 

[L_p_d1_point(1,3)],'b*','LineWidth',2), end 

            hold off 

             

             

            figure(2) 

            hold on 

            xlabel('X'),ylabel('Y'),zlabel('Z') 

            % Drawing the links between m 

            plot3([Sol_mat_q(i,3) Sol_mat_q(n+1+i,3)], 

[Sol_mat_q(i,4) Sol_mat_q(n+1+i,4)], [Sol_mat_q(i,5) 

Sol_mat_q(n+1+i,5)],'b','LineWidth',1) 

            if and(i==(1+(j-1)*(n+1)), TAGs==1), 

text([L_q_m_point(1,1)],[L_q_m_point(1,2)],[L_q_m_point(1,3)],['    

' num2str(L_q_m)]), 

               , plot3([L_q_m_point(1,1)], [L_q_m_point(1,2)], 

[L_q_m_point(1,3)],'b*','LineWidth',2), end             

            % Drawing the Diagonal links 

            if Diagonal==1, plot3([Sol_mat_q(i,3) 

Sol_mat_q(n+1+i+1,3)], [Sol_mat_q(i,4) Sol_mat_q(n+1+i+1,4)], 

[Sol_mat_q(i,5) Sol_mat_q(n+1+i+1,5)],'k','LineWidth',2), end 

            if and(i==(2+(j-1)*(n+1)), TAGd==1), 

text([L_q_d1_point(1,1)],[L_q_d1_point(1,2)],[L_q_d1_point(1,3)]

,['    ' num2str(L_q_d1)]), 

               , plot3([L_q_d1_point(1,1)], [L_q_d1_point(1,2)], 

[L_q_d1_point(1,3)],'b*','LineWidth',2), end 

            hold off 
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            figure(3) 

            hold on 

            xlabel('X'),ylabel('Y'),zlabel('Z') 

            % Drawing the links between m 

            plot3([Sol_mat_q_r(i,3) Sol_mat_q_r(n+1+i,3)], 

[Sol_mat_q_r(i,4) Sol_mat_q_r(n+1+i,4)], [Sol_mat_q_r(i,5) 

Sol_mat_q_r(n+1+i,5)],'b','LineWidth',2) 

            if and(i==(1+(j-1)*(n+1)), TAGs==1), 

text([L_q_r_m_point(1,1)],[L_q_r_m_point(1,2)],[L_q_r_m_point(1,

3)],['    ' num2str(L_q_r_m)]), 

               , plot3([L_q_r_m_point(1,1)], 

[L_q_r_m_point(1,2)], [L_q_r_m_point(1,3)],'b*','LineWidth',2), 

end             

            % Drawing the Diagonal links 

            if Diagonal==11, plot3([Sol_mat_q_r(i,3) 

Sol_mat_q_r(n+1+i+1,3)], [Sol_mat_q_r(i,4) 

Sol_mat_q_r(n+1+i+1,4)], [Sol_mat_q_r(i,5) 

Sol_mat_q_r(n+1+i+1,5)],'k','LineWidth',2), end 

            if Diagonal==22, plot3([Sol_mat_q_r(i+1,3) 

Sol_mat_q_r(n+1+i+1-1,3)], [Sol_mat_q_r(i+1,4) 

Sol_mat_q_r(n+1+i+1-1,4)], [Sol_mat_q_r(i+1,5) 

Sol_mat_q_r(n+1+i+1-1,5)],'k','LineWidth',2), end 

            if and(i==(2+(j-1)*(n+1)), TAGd==1), 

text([L_q_r_d1_point(1,1)],[L_q_r_d1_point(1,2)],[L_q_r_d1_point

(1,3)],['    ' num2str(L_q_r_d1)]), 

               , plot3([L_q_r_d1_point(1,1)], 

[L_q_r_d1_point(1,2)], 

[L_q_r_d1_point(1,3)],'b*','LineWidth',2), end 

            hold off            

                         

             

        end 

    end 

end 

  

Sol_mat_p; 

Sol_mat_q; 

Sol_mat_q_r; 

  

Sol_mat2_p; 

Sol_mat2_q; 

Sol_mat2_q_r; 

  

Delta_mat(:,1)= L_q_r_mat(:,1); 

Delta_mat(:,2)= L_q_r_mat(:,2)-L_p_mat(:,2); 

Delta_mat(:,3)= L_q_r_mat(:,3)-L_p_mat(:,3); 
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Delta_mat(:,4)= L_q_r_mat(:,4)-L_p_mat(:,4); 

Delta_mat(:,5)= L_q_r_mat(:,5)-L_p_mat(:,5); 

Delta_mat(:,6)= L_q_r_mat(:,6)-L_p_mat(:,6); 

  

  

fprintf('            m       Bottom 2a    Top 3b       Side 4c    

DiagonalR 5d  DiagonalL') 

L_p_mat   = round(L_p_mat*rf)/rf 

%fprintf('            m       Bottom 2a    Top 3b       Side 4c     

DiagonalR 5d   DiagonalL') 

%round(L_q_mat*rf)/rf 

fprintf('            m       Bottom 2a    Top 3b       Side 4c    

DiagonalR 5d  DiagonalL') 

L_q_r_mat = round(L_q_r_mat*rf)/rf 

Delta_mat = round(Delta_mat*rf)/rf 

  

  

% Original Shape (vertical stripe) 

xp1=0;               yp1=0;               yp3=0;            

jump=0; 

for j = 1 : m %ceil(m/2) 

     

    xp2= xp1+ L_p_mat(j,2); 

    yp2= yp1; 

    xp3= (L_p_mat(j,5)^2 - L_p_mat(j,4)^2 + 

L_p_mat(j,2)^2)/(2*L_p_mat(j,2)) + xp1; 

    yp3= sqrt(abs(L_p_mat(j,4)^2 - (xp3 - L_p_mat(j,2))^2)) 

+yp3; 

    %yp3= sqrt(L_p_mat(j,5)^2 - xp3^2) +yp3;                                  

    xp4= xp3 - L_p_mat(j,3); 

    yp4= yp3; 

         

    if abs(xp4) < 0.1, xp4=0;, end 

     

    [1 j; xp1 yp1; xp2 yp2; xp3 yp3; xp4 yp4]; 

     

    figure(4) % Figure 4 and initial 6 here are the same 

    hold on 

    %xlim([-10 a+10]), ylim([-10 ceil(m/2)*((h_o/m)+10)]) 

    plot([xp1 xp2], [yp1 yp2],'k:','LineWidth',1)                  

% Bottom 

    plot([xp2 xp3], [yp2 yp3],'k:','LineWidth',1)                  

% Side Right 

    plot([xp3 xp4], [yp3 yp4],'k:','LineWidth',1)                  

% Top 

    plot([xp4 xp1], [yp4 yp1],'k:','LineWidth',1)                  

% Side Left 
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    plot([xp1 xp3], [yp1 yp3],'k:','LineWidth',1)                  

% Diagonal 

    hold off 

  

    figure(6) % Figure 6 will be carried on 

    hold on 

    %xlim([-10 a+10]), ylim([-10 ceil(m/2)*((h_o/m)+10)]) 

    plot([xp1 xp2], [yp1 yp2],'k:','LineWidth',1)                  

% Bottom 

    plot([xp2 xp3], [yp2 yp3],'k:','LineWidth',1)                  

% Side Right 

    plot([xp3 xp4], [yp3 yp4],'k:','LineWidth',1)                  

% Top 

    plot([xp4 xp1], [yp4 yp1],'k:','LineWidth',1)                  

% Side Left 

    plot([xp1 xp3], [yp1 yp3],'k:','LineWidth',1)                  

% Diagonal 

    hold off 

     

    Points_p_mat_f(:,j)= [j; xp1; yp1; xp2; yp2; xp3; yp3; xp4; 

yp4]; 

    

    xp1= xp4;         yp1= yp4; 

     

    j=j+jump; 

    figure(7) 

    hold on 

    plot3([bs_xb_p_mat(j,3) bs_xb_p_mat(j+1,3)], 

[bs_xb_p_mat(j,4) bs_xb_p_mat(j+1,4)], [bs_xb_p_mat(j,5) 

bs_xb_p_mat(j+1,5)],'k:','LineWidth',1) 

    plot3([bs_xb_p_mat(j+1,3) bs_xb_p_mat(j+3,3)], 

[bs_xb_p_mat(j+1,4) bs_xb_p_mat(j+3,4)], [bs_xb_p_mat(j+1,5) 

bs_xb_p_mat(j+3,5)],'k:','LineWidth',1) 

    plot3([bs_xb_p_mat(j+3,3) bs_xb_p_mat(j+2,3)], 

[bs_xb_p_mat(j+3,4) bs_xb_p_mat(j+2,4)], [bs_xb_p_mat(j+3,5) 

bs_xb_p_mat(j+2,5)],'k:','LineWidth',1) 

    plot3([bs_xb_p_mat(j+2,3) bs_xb_p_mat(j,3)], 

[bs_xb_p_mat(j+2,4) bs_xb_p_mat(j,4)], [bs_xb_p_mat(j+2,5) 

bs_xb_p_mat(j,5)],'k:','LineWidth',1) 

    plot3([bs_xb_p_mat(j,3) bs_xb_p_mat(j+3,3)], 

[bs_xb_p_mat(j,4) bs_xb_p_mat(j+3,4)], [bs_xb_p_mat(j,5) 

bs_xb_p_mat(j+3,5)],'k:','LineWidth',1) 

    hold off 

     

    Points_p_mat_t(:,j-jump)= [j-jump; 

bs_xb_p_mat(j+0,3);bs_xb_p_mat(j+0,4);bs_xb_p_mat(j+0,5)... 
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                                     ; 

bs_xb_p_mat(j+1,3);bs_xb_p_mat(j+1,4);bs_xb_p_mat(j+1,5)... 

                                     ; 

bs_xb_p_mat(j+3,3);bs_xb_p_mat(j+3,4);bs_xb_p_mat(j+3,5)... 

                                     ; 

bs_xb_p_mat(j+2,3);bs_xb_p_mat(j+2,4);bs_xb_p_mat(j+2,5)]; 

       

    jump = jump+1; 

end 

  

% twisted cylinder with over all height = h_o (vertical stripe) 

% for j = 1 %: ceil(m/2) 

%      

%     xq1=0;               yq1=0; 

%     xq2=L_q_mat(j,2);    yq2=0; 

%     xq3=(L_q_mat(j,5)^2 + L_q_mat(j,2)^2 - 

L_q_mat(j,4)^2)/(2*L_q_mat(j,2)); 

%     yq3=sqrt(L_q_mat(j,5)^2 - xq3^2); 

%     xq4=xq3-L_q_mat(j,3); yq4=yq3; 

%      

%     figure(4) 

%     hold on 

%     xlim([-10 a+10]), ylim([-10 (h_o/m)+10]) 

%     plot([xq1 xq2], [yq1 yq2],'b','LineWidth',2)                  

% Bottom 

%     plot([xq2 xq3], [yq2 yq3],'b','LineWidth',2)                  

% Side Right 

%     plot([xq3 xq4], [yq3 yq4],'b','LineWidth',2)                  

% Top 

%     plot([xq4 xq1], [yq4 yq1],'b','LineWidth',2)                  

% Side Left 

%     plot([xq1 xq3], [yq1 yq3],'b','LineWidth',2)                  

% Diagonal 

%     hold off 

%      

% end 

  

  

% twisted cylinder with calculated height (vertical stripe) 

x1=0;               y1=0;               y3=0;           x4=0;              

jump=0;             %y3_2=0; 

for j = 1 : m %ceil(m/2) 

     

    x2= x1+ L_q_r_mat(j,2); 

    y2= y1; 

    x3= (L_q_r_mat(j,5)^2 - L_q_r_mat(j,4)^2 + 

L_q_r_mat(j,2)^2)/(2*L_q_r_mat(j,2)) + x1; 
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    if Delta_theta ==0,  

        y3= sqrt(L_q_r_mat(j,4)^2 - (L_q_r_mat(j,2) - (x3 - 

x4))^2) +y3; 

    else  

        y3= sqrt(L_q_r_mat(j,4)^2 - ((x3 - x4) - 

L_q_r_mat(j,2))^2) +y3; 

    end 

    %y3_2 = sqrt(L_q_r_mat(j,5)^2 - (x3 - x4)^2) +y3_2;                                  

    x4= x3 - L_q_r_mat(j,3); 

    y4= y3; 

     

    [2 j; x1 y1; x2 y2; x3 y3; x4 y4]; 

         

    figure(5) % Figure 5 and initial 6 here are the same 

    hold on 

    xlim([-10 a+10]), ylim([-10 ceil(m/2)*((h_o/m)+10)]) 

    plot([x1 x2], [y1 y2],'r','LineWidth',2)                  % 

Bottom 

    plot([x2 x3], [y2 y3],'r','LineWidth',2)                  % 

Side Right 

    plot([x3 x4], [y3 y4],'r','LineWidth',2)                  % 

Top 

    plot([x4 x1], [y4 y1],'r','LineWidth',2)                  % 

Side Left 

    plot([x1 x3], [y1 y3],'r','LineWidth',2)                  % 

Diagonal 

    hold off 

  

    figure(6) % Figure 6 is carried on 

    hold on 

    %xlim([-10 a+10]), ylim([-10 ceil(m/2)*((h_o/m)+10)]) 

    plot([x1 x2], [y1 y2],'r','LineWidth',2)                  % 

Bottom 

    plot([x2 x3], [y2 y3],'r','LineWidth',2)                  % 

Side Right 

    plot([x3 x4], [y3 y4],'r','LineWidth',2)                  % 

Top 

    plot([x4 x1], [y4 y1],'r','LineWidth',2)                  % 

Side Left 

    plot([x1 x3], [y1 y3],'r','LineWidth',2)                  % 

Diagonal 

    hold off 

     

    Points_q_r_mat_f(:,j)= [j; x1; y1; x2; y2; x3; y3; x4; y4]; 

     

    x1= x4;         y1= y4; 
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    j=j+jump; 

    figure(7) 

    hold on 

    plot3([bs_xb_q_r_mat(j,3) bs_xb_q_r_mat(j+1,3)], 

[bs_xb_q_r_mat(j,4) bs_xb_q_r_mat(j+1,4)], [bs_xb_q_r_mat(j,5) 

bs_xb_q_r_mat(j+1,5)],'r','LineWidth',2) 

    plot3([bs_xb_q_r_mat(j+1,3) bs_xb_q_r_mat(j+3,3)], 

[bs_xb_q_r_mat(j+1,4) bs_xb_q_r_mat(j+3,4)], 

[bs_xb_q_r_mat(j+1,5) bs_xb_q_r_mat(j+3,5)],'r','LineWidth',2) 

    plot3([bs_xb_q_r_mat(j+3,3) bs_xb_q_r_mat(j+2,3)], 

[bs_xb_q_r_mat(j+3,4) bs_xb_q_r_mat(j+2,4)], 

[bs_xb_q_r_mat(j+3,5) bs_xb_q_r_mat(j+2,5)],'r','LineWidth',2) 

    plot3([bs_xb_q_r_mat(j+2,3) bs_xb_q_r_mat(j,3)], 

[bs_xb_q_r_mat(j+2,4) bs_xb_q_r_mat(j,4)], [bs_xb_q_r_mat(j+2,5) 

bs_xb_q_r_mat(j,5)],'r','LineWidth',2) 

    plot3([bs_xb_q_r_mat(j,3) bs_xb_q_r_mat(j+3,3)], 

[bs_xb_q_r_mat(j,4) bs_xb_q_r_mat(j+3,4)], [bs_xb_q_r_mat(j,5) 

bs_xb_q_r_mat(j+3,5)],'r','LineWidth',2) 

    hold off 

     

    Points_q_r_mat_t(:,j-jump)= [j-jump; 

bs_xb_q_r_mat(j+0,3);bs_xb_q_r_mat(j+0,4);bs_xb_q_r_mat(j+0,5)..

. 

                                       ; 

bs_xb_q_r_mat(j+1,3);bs_xb_q_r_mat(j+1,4);bs_xb_q_r_mat(j+1,5)..

. 

                                       ; 

bs_xb_q_r_mat(j+3,3);bs_xb_q_r_mat(j+3,4);bs_xb_q_r_mat(j+3,5)..

. 

                                       ; 

bs_xb_q_r_mat(j+2,3);bs_xb_q_r_mat(j+2,4);bs_xb_q_r_mat(j+2,5)]; 

     

    jump = jump+1; 

     

end 

  

bs_xb_p_mat 

bs_xb_q_r_mat 

  

Points_p_mat_f   =    round(Points_p_mat_f*rf)/rf 

Points_q_r_mat_f =    round(Points_q_r_mat_f*rf)/rf 

Points_p_mat_t   =    round(Points_p_mat_t*rf)/rf 

Points_q_r_mat_t =    round(Points_q_r_mat_t*rf)/rf 

  

  

bs_Delta_mat=[]; 
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for j = 1 : m 

     

    if j == 1,  

        bs_Delta_mat= [bs_Delta_mat; Delta_mat(j,5)];  

    else 

        bs_Delta_mat= [bs_Delta_mat; Delta_mat(j,2); 

Delta_mat(j,5)];  

    end 

  

end 

     

bs_Delta_mat 

  

  

bs_mat=[]; xb_box=[]; 

x = abs(bs_Delta_mat)+5; 

Theta_1 = [30;30;30;30;30;30;30];        % Degrees 

w1 = 5.5;  %7 

v = 7;     %7 

  

for n = 1 : (2*m - 1) 

     

    L1 = (x(n,1) - 

abs(bs_Delta_mat(n,1))/2)*(1/cos(deg2rad(Theta_1(n,1)))); 

    L2 = L1 * sqrt((abs(bs_Delta_mat(n,1))/(2*L1))^2 + 

(sin(deg2rad(Theta_1(n,1))))^2); 

    Theta_2i = rad2deg(acos(abs(bs_Delta_mat(n,1))/(2*L2))); 

    bi = L1 * sin(deg2rad(Theta_1(n,1))); 

     

    m_bs = L2/L1; 

    w2 = w1 * (m_bs/(2*v))^(1/3); 

     

    bs_mat= [bs_mat; x(n,1) bi bs_Delta_mat(n,1) Theta_1(n,1) 

Theta_2i L1 L2 w2]; 

     

    xb_box= [xb_box; x(n,1) L1*cos(deg2rad(Theta_1(n,1))) bi*2]; 

     

end 

  

fprintf('          x          bi          Delta        Theta_1     

Theta_2i      L1            L2          w2') 

bs_mat 

fprintf('          xi          xf          2bi') 

xb_box 

  

save('LineProject10') 

 



www.manaraa.com

 

191 

 

 

 

 

 

APPENDIX D: LBCCSM MODEL’S PLOTS 
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D.1 LBCCSM Model’s Plots for θ1 = 20 

 

Figure A  (bmax/X) vs (θ2i) over range of (v) for θ1=20
o
. 
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Figure B  (Θ1) vs (θ2i) over range of (v) for θ1=20
o
. 
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Figure C  ( f ) vs (θ2i) over range of (v) for θ1=20
o
. 
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 a) b) 

 

Figure D  (J) vs (θ2i) for θ1=20
o 
over range of (v), (a) Lower and (b) Higher force range. 
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D.2 LBCCSM Model’s Plots for θ1 = 40 

 

Figure E  (bmax/X) vs (θ2i) over range of (v) for θ1=40
o
. 
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Figure F  (Θ1) vs (θ2i) over range of (v) for θ1=40
o
. 
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Figure G  ( f ) vs (θ2i) over range of (v) for θ1=40
o
. 
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 a) b) 

 

Figure H  (J) vs (θ2i) for θ1=40
o 
over range of (v), (a) Lower and (b) Higher force range. 
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D.3 LBCCSM Model’s Plots for θ1 = 60 

 

Figure I  (bmax/X) vs (θ2i) over range of (v) for θ1=60
o
. 
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Figure J  (Θ1) vs (θ2i) over range of (v) for θ1=60
o
. 
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Figure K  ( f ) vs (θ2i) over range of (v) for θ1=60
o
. 
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 a) b) 

 

Figure  L (J) vs (θ2i) for θ1=60
o 
over range of (v), (a) Lower and (b) Higher force range. 
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APPENDIX E: DESIGN DIMENSION (IN MILLIMETERS) 

 

E.1 P1 SMSF's Design Dimensions 

 

Figure M  P1 SMSF: Initial state mechanism's constraints. 

 

 

Figure N  P1 SMSF: Final state mechanism's constraints. 
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Figure O P1 SMSF: Mechanism's design dimensions (without bistability). 

 

E.2 P2 SMSF's Design Dimensions 

 

Figure P  P2 SMSF: Initial state mechanism's constraints. 
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Figure Q  P2 SMSF: Final state mechanism's constraints. 

 

 

Figure R  P2 SMSF: Mechanism's design dimensions. 
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E.3 PEE Design Dimensions for the P1 SMSF 

 

Figure S  P1 SMSF: Left half PEE design dimensions. 

 

 

Figure T  P1 SMSF: Mechanism’s design dimensions (with bistability). 
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E.4 Parallel Four-bar Bistable Compliant Mechanism Design Dimensions 

 

Figure U  Parallel four-bar bistable mechanism’s initial layout dimensions. 

 

Figure V  Parallel four-bar bistable mechanism’s intermediate dimensions. 

 

Figure W  Parallel four-bar bistable mechanism’s living hinges dimensions.  
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APPENDIX F: POLYPROPYLENE COPOLYMER DATASHEET 
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APPENDIX G: TENSILE TEST DATA 

 

Table  A Test data for the displacement load rate 0.081 in/sec. 

 

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

7.27 0.14 41.00 3.36 29.47 6.42 70.48 9.58

14.93 0.27 40.77 3.47 25.95 6.53 64.25 9.68

21.10 0.38 39.49 3.57 23.43 6.64 61.43 9.78

26.67 0.48 38.18 3.67 23.83 6.73 66.69 9.89

30.98 0.58 37.19 3.77 23.79 6.83 72.59 9.99

34.88 0.69 36.08 3.87 24.28 6.94 81.15 10.09

37.93 0.79 35.50 3.98 24.59 7.04 87.49 10.19

41.12 0.89 35.37 4.08 24.99 7.14 92.65 10.29

44.49 1.00 34.38 4.18 25.41 7.24 97.06 10.38

47.14 1.10 33.07 4.28 25.57 7.34

48.90 1.21 31.92 4.38 26.56 7.45

50.94 1.31 31.16 4.49 27.76 7.55

52.82 1.41 32.08 4.59 29.84 7.65

53.80 1.52 31.92 4.69 32.15 7.75

52.80 1.62 32.05 4.79 35.02 7.85

48.27 1.72 32.82 4.89 38.03 7.95

41.63 1.83 32.80 4.99 41.28 8.06

37.86 1.93 32.57 5.10 44.65 8.16

35.79 2.04 31.64 5.20 48.94 8.26

36.50 2.12 32.35 5.30 52.92 8.36

36.31 2.24 33.34 5.40 56.20 8.46

36.82 2.34 33.68 5.50 60.00 8.57

37.12 2.44 34.48 5.60 63.55 8.67

37.70 2.55 34.07 5.60 66.74 8.77

38.38 2.65 35.97 5.71 69.83 8.87

39.40 2.75 37.57 5.81 73.29 8.97

40.71 2.85 38.94 5.91 76.19 9.07

41.54 2.95 39.18 6.01 78.59 9.18

43.03 3.06 38.67 6.12 79.46 9.28

43.30 3.16 37.04 6.22 78.41 9.38

42.24 3.26 33.99 6.32 73.86 9.48

0.081 (in/sec)
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Table  B Test data for the displacement load rate 0.188 in/sec. 

 

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

17.11 0.14 34.23 0.68 44.57 1.21 31.08 2.18 29.26 3.54

17.74 0.16 34.54 0.70 44.76 1.23 31.11 2.22 29.20 3.58

18.36 0.17 34.85 0.71 45.09 1.24 31.04 2.25 29.06 3.62

18.97 0.18 35.51 0.72 45.51 1.27 31.03 2.29 28.86 3.65

19.57 0.20 36.09 0.74 45.97 1.28 30.70 2.32 28.24 3.68

20.14 0.21 36.49 0.75 46.52 1.30 30.61 2.35 28.32 3.72

20.69 0.23 36.59 0.77 46.78 1.32 30.49 2.39 27.96 3.75

21.22 0.24 37.27 0.78 46.86 1.34 30.82 2.42 28.32 3.78

19.77 0.25 37.94 0.79 45.01 1.36 30.91 2.46 28.28 3.82

20.22 0.27 38.46 0.80 45.06 1.38 31.09 2.49 28.05 3.86

21.01 0.28 38.44 0.82 45.07 1.40 31.53 2.52 27.81 3.89

21.70 0.29 38.70 0.83 44.94 1.42 32.52 2.56 27.47 3.93

22.30 0.31 39.01 0.84 44.79 1.44 33.07 2.60 27.21 3.96

22.87 0.32 38.91 0.86 44.91 1.47 33.32 2.63 26.78 4.00

23.32 0.34 38.99 0.87 44.16 1.49 33.98 2.67 26.35 4.04

23.78 0.35 39.06 0.88 42.74 1.52 34.65 2.70 25.74 4.07

24.22 0.37 39.29 0.90 41.32 1.55 34.81 2.74 25.47 4.10

24.74 0.38 39.61 0.91 38.94 1.57 35.07 2.77 25.09 4.14

25.29 0.39 39.87 0.93 36.74 1.59 35.62 2.81 24.45 4.17

25.84 0.41 40.18 0.94 34.27 1.62 35.91 2.84 24.25 4.21

26.30 0.42 40.39 0.95 32.95 1.64 36.28 2.88 24.15 4.25

26.66 0.43 40.41 0.97 31.15 1.67 35.59 2.91 24.47 4.28

27.21 0.45 40.62 0.98 28.64 1.70 34.47 2.94 24.74 4.32

27.64 0.46 40.73 0.99 27.16 1.72 33.99 2.98 24.60 4.36

27.82 0.48 40.82 1.00 26.91 1.73 33.96 3.02 24.32 4.39

28.03 0.49 41.09 1.02 26.97 1.76 34.16 3.05 24.09 4.43

28.57 0.50 41.30 1.03 26.86 1.79 33.86 3.09 24.25 4.46

29.11 0.51 41.74 1.04 27.17 1.82 33.07 3.12 24.66 4.50

29.49 0.53 42.09 1.06 27.66 1.85 32.76 3.16 24.74 4.54

29.80 0.54 42.45 1.07 28.19 1.88 32.76 3.19 25.06 4.57

30.48 0.56 42.93 1.09 28.70 1.90 32.37 3.23 25.07 4.61

31.02 0.57 43.07 1.10 29.35 1.93 32.51 3.27 25.45 4.65

31.51 0.58 43.46 1.11 29.94 1.96 32.45 3.30 25.51 4.69

31.57 0.59 43.64 1.13 30.09 2.00 32.47 3.33 25.26 4.72

32.09 0.61 43.57 1.14 29.93 2.02 32.53 3.37 25.61 4.76

32.69 0.63 43.82 1.15 30.36 2.05 31.72 3.40 25.48 4.79

33.11 0.64 44.19 1.17 30.82 2.09 30.84 3.44 25.42 4.83

33.25 0.66 44.30 1.18 30.53 2.12 30.53 3.48 23.74 4.87

33.72 0.67 44.22 1.19 30.66 2.15 29.66 3.51 23.53 4.90

0.188 (in/sec)



www.manaraa.com

 

212 

Table  B (Continued) 

 

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

23.86 4.94 24.97 6.35 24.55 7.76 70.51 9.17

24.54 4.98 21.44 6.39 24.93 7.80 71.26 9.19

25.31 5.01 17.52 6.42 25.84 7.84 71.49 9.24

25.66 5.05 16.59 6.46 26.97 7.87 71.95 9.27

25.48 5.09 15.48 6.49 27.80 7.91 72.45 9.31

25.61 5.13 14.93 6.53 29.01 7.94 72.49 9.35

25.49 5.16 14.65 6.56 29.82 7.98 71.91 9.38

25.16 5.19 14.93 6.60 31.01 8.01 71.49 9.42

25.90 5.23 15.28 6.64 32.26 8.03 70.29 9.45

26.39 5.27 15.68 6.67 33.18 8.06 68.55 9.49

26.79 5.30 16.23 6.71 34.74 8.10 66.91 9.53

26.99 5.34 16.51 6.75 35.90 8.14 65.20 9.56

27.77 5.38 16.50 6.78 37.32 8.17 64.23 9.60

28.66 5.42 16.82 6.82 38.91 8.21 61.47 9.63

28.74 5.45 16.58 6.85 40.39 8.25 59.11 9.67

29.55 5.49 17.10 6.89 41.94 8.28 57.20 9.71

30.43 5.52 17.11 6.92 43.16 8.32 56.14 9.74

30.73 5.56 17.35 6.96 44.49 8.36 55.72 9.78

31.61 5.60 17.36 6.99 46.16 8.39 55.65 9.82

31.90 5.63 17.64 7.03 47.86 8.43 56.36 9.85

32.51 5.67 18.16 7.06 49.53 8.47 57.99 9.89

33.45 5.71 18.59 7.10 50.84 8.50 60.51 9.92

34.34 5.74 18.56 7.14 52.22 8.53 63.26 9.96

34.61 5.77 18.74 7.18 53.47 8.57 65.95 10.00

34.51 5.81 19.07 7.21 54.48 8.61 68.55 10.03

34.66 5.85 19.24 7.25 55.41 8.64 70.53 10.07

35.07 5.88 19.22 7.29 56.48 8.68 73.03 10.10

34.80 5.92 18.94 7.32 57.36 8.72 74.11 10.14

34.95 5.95 19.30 7.36 58.91 8.75 74.99 10.16

34.80 5.99 19.22 7.39 60.44 8.79 75.98 10.18

34.82 6.02 19.69 7.43 61.66 8.83 76.97 10.20

34.41 6.06 20.16 7.47 62.59 8.86 76.18 10.22

33.52 6.10 20.70 7.50 63.57 8.90 74.90 10.23

32.76 6.13 20.89 7.54 64.59 8.93 74.06 10.23

32.15 6.17 21.26 7.58 65.61 8.97

31.45 6.20 21.98 7.61 67.03 9.01

30.26 6.24 22.48 7.65 67.85 9.05

29.08 6.28 22.89 7.69 68.81 9.08

27.11 6.31 23.78 7.73 69.72 9.12

0.188 (in/sec)     Cont.
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Table  C Test data for the displacement load rate 0.275 in/sec. 

 

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

15.11 0.36 20.24 1.80 25.99 3.34 19.91 4.90 8.59 6.45

16.32 0.36 20.82 1.84 25.77 3.38 20.18 4.93 8.85 6.48

17.59 0.38 22.17 1.87 25.23 3.42 19.97 4.97 9.28 6.53

18.57 0.41 22.51 1.91 24.52 3.46 20.53 5.02 9.99 6.56

19.56 0.44 22.91 1.95 23.56 3.50 20.99 5.05 10.74 6.60

20.89 0.48 23.72 1.99 23.40 3.53 21.30 5.09 11.59 6.64

22.02 0.51 23.43 2.03 23.44 3.58 21.85 5.14 11.97 6.68

22.89 0.55 23.57 2.07 22.66 3.62 22.32 5.17 12.45 6.72

24.30 0.59 24.18 2.11 22.56 3.66 22.49 5.21 12.59 6.76

25.30 0.63 23.72 2.15 22.76 3.69 22.48 5.25 12.62 6.80

26.49 0.67 24.17 2.19 22.64 3.73 22.74 5.29 12.68 6.84

26.99 0.70 24.52 2.23 22.86 3.77 23.15 5.33 12.97 6.88

28.14 0.75 24.37 2.27 22.89 3.81 23.59 5.38 13.07 6.92

29.09 0.78 24.66 2.31 22.45 3.85 24.27 5.42 13.45 6.96

30.06 0.82 24.37 2.34 22.61 3.89 24.61 5.45 13.74 7.00

30.90 0.86 24.59 2.39 22.55 3.93 25.35 5.49 14.28 7.04

31.99 0.90 25.16 2.42 22.20 3.97 26.01 5.53 14.74 7.08

32.97 0.94 25.69 2.46 21.94 4.01 26.47 5.58 14.91 7.12

33.80 0.97 26.25 2.50 21.98 4.05 26.89 5.61 14.99 7.17

34.76 1.01 25.40 2.54 20.97 4.09 27.68 5.65 15.31 7.20

35.30 1.05 26.11 2.58 20.32 4.13 27.82 5.70 15.44 7.24

36.16 1.09 26.77 2.62 19.57 4.17 28.25 5.73 16.20 7.29

37.15 1.13 26.93 2.66 19.81 4.21 28.94 5.77 16.78 7.33

37.97 1.17 27.39 2.70 19.57 4.25 29.03 5.81 16.85 7.37

35.70 1.21 26.97 2.74 19.66 4.29 28.73 5.85 17.12 7.41

36.22 1.25 27.23 2.78 19.78 4.33 28.24 5.89 17.57 7.45

36.40 1.29 27.70 2.82 19.91 4.37 28.39 5.93 17.98 7.49

36.82 1.33 27.45 2.86 20.44 4.41 28.21 5.97 18.27 7.53

36.36 1.37 27.45 2.90 20.48 4.45 28.06 6.01 18.43 7.57

36.20 1.41 27.24 2.93 20.32 4.49 26.89 6.05 18.91 7.61

34.90 1.45 26.92 2.98 20.80 4.53 26.32 6.09 19.42 7.65

32.98 1.49 27.31 3.02 20.86 4.57 24.85 6.13 20.09 7.69

29.97 1.53 27.45 3.06 20.94 4.61 23.51 6.17 20.80 7.73

27.87 1.57 27.06 3.10 21.26 4.65 21.56 6.21 21.74 7.77

27.44 1.60 27.18 3.14 21.30 4.69 18.86 6.25 22.66 7.81

26.29 1.64 27.18 3.18 21.54 4.73 14.57 6.29 23.24 7.85

23.30 1.68 26.95 3.22 20.14 4.77 10.86 6.33 24.07 7.89

19.84 1.72 26.14 3.26 19.41 4.81 9.91 6.37 25.14 7.93

20.11 1.76 26.12 3.30 19.59 4.85 9.09 6.41 25.61 7.97

0.275 (in/sec)     

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

26.82 8.01 41.74 9.60

28.36 8.05 43.91 9.64

29.64 8.10 46.24 9.68

31.11 8.13 49.29 9.72

32.15 8.17 52.32 9.76

33.76 8.21 55.28 9.80

35.08 8.26 58.32 9.84

36.59 8.30 61.28 9.88

38.03 8.34 64.17 9.92

39.26 8.38 66.70 9.96

40.51 8.42 69.28 10.00

42.19 8.46 71.61 10.04

43.91 8.50 73.93 10.08

45.28 8.54 76.18 10.12

46.84 8.57 78.29 10.17

48.27 8.62 79.48 10.20

49.95 8.66 79.47 10.24

51.40 8.70 80.28 10.28

52.66 8.74 81.22 10.32

53.43 8.78 81.27 10.35

54.74 8.82 79.56 10.37

55.78 8.86 78.32 10.39

57.07 8.90

58.28 8.94

58.99 8.99

59.61 9.03

60.11 9.07

60.99 9.11

60.66 9.15

58.60 9.19

56.78 9.23

54.73 9.27

51.11 9.32

48.07 9.36

46.01 9.39

42.72 9.43

40.98 9.48

39.82 9.52

40.34 9.56
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Table  D Test data for the displacement load rate 0.391 in/sec. 

  

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

FORCE     

LBS

DISP  

IN

10.35 0.35 16.85 4.22 23.94 8.35

12.32 0.40 15.43 4.33 26.51 8.45

14.27 0.46 13.58 4.44 28.73 8.55

16.34 0.54 12.73 4.54 33.00 8.66

18.81 0.62 12.59 4.65 38.00 8.77

20.56 0.70 12.89 4.75 42.00 8.87

23.09 0.78 13.42 4.86 44.00 8.98

25.04 0.87 14.10 4.97 29.37 9.09

26.73 0.97 15.04 5.07 28.85 9.20

27.46 1.07 15.67 5.18 32.02 9.30

29.19 1.17 16.50 5.28 36.02 9.41

30.23 1.27 16.01 5.39 39.73 9.52

31.17 1.38 16.23 5.50 45.34 9.62

26.44 1.48 15.90 5.60 50.83 9.73

11.33 1.59 14.65 5.71 56.19 9.83

11.50 1.69 13.98 5.81 62.00 9.94

12.77 1.80 12.65 5.91 67.52 10.04

14.85 1.90 11.55 6.02 72.65 10.13

15.58 2.01 9.79 6.12 77.85 10.23

17.19 2.11 8.51 6.23 82.58 10.33

18.41 2.22 8.45 6.33 87.43 10.42

19.15 2.32 7.31 6.44 91.96 10.52

20.31 2.42 8.02 6.54 94.33 10.60

21.05 2.53 8.60 6.64 96.62 10.66

21.02 2.64 9.31 6.75 98.42 10.73

20.90 2.74 9.81 6.85 99.64 10.79

21.10 2.85 10.46 6.96 101.33 10.84

21.70 2.96 11.08 7.07 103.17 10.89

21.40 3.07 11.30 7.17 105.35 10.94

21.00 3.17 11.73 7.28 106.35 10.99

20.70 3.28 11.98 7.38 107.62 11.04

20.00 3.39 12.83 7.50 108.84 11.08

19.80 3.48 12.85 7.60 108.96 11.12

19.48 3.59 13.94 7.71 109.19 11.14

19.91 3.69 13.19 7.82 107.23 11.18

19.83 3.80 14.59 7.92 106.76 11.21

19.69 3.90 16.34 8.03

19.00 4.01 17.35 8.14

17.52 4.11 20.70 8.24

0.391 (in/sec)  



www.manaraa.com

 

215 

 

 

 

 

 

APPENDIX H: COPYRIGHT PERMISSIONS 

 

H.1 Copyright Permission for Material Used in Chapter 3 and Chapter 4 
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H.2 Copyright Permission for Material Used in Figure  5.12 and Figure  5.14 
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